Abstract
A detailed scheme of the Peptidyl Transferase Centre of bacterial ribosomes is proposed by summarizing the literature data on the substrate specificity of the acceptor and donor sites. According to the proposed scheme only the elements of the donor and acceptor having a stable structure bind with the ribosome. The present paper proposes such main elements for the donor and acceptor.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
- Almquist R. G., Vince R. Puromycin analogs. Synthesis and biological activity of 5'-deoxypuromycin and its aminonucleoside, 6-dimethylamino-9(3'-amin-3',5-dideoxy-beta-D-ribofuranosyl)purine. J Med Chem. 1973 Dec;16(12):1396–1398. doi: 10.1021/jm00270a018. [DOI] [PubMed] [Google Scholar]
- Cerná J., Rychlík I., Krayevsky A. A., Gottikh B. P. 2' (3')-O-N-formylmethionyl)-adenosine-5'-phosphate, a new donor substrate in peptidyl transferase catalyzed reactions. FEBS Lett. 1973 Dec 1;37(2):188–191. doi: 10.1016/0014-5793(73)80455-7. [DOI] [PubMed] [Google Scholar]
- Cerná J., Rychlík I., Krayevsky A. A., Gottikh B. P. A contribution to the studies on donor site of peptidyl transferase with acylaminoacyl-nucleoside-5'-monophosphates. Acta Biol Med Ger. 1974;33(5-6):877–883. [PubMed] [Google Scholar]
- Cerná J., Rychlík I., Zemlicka J., Chládek S. Substrate specificity of ribosomal peptidyl transferase. II. 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction. Biochim Biophys Acta. 1970 Mar 19;204(1):203–209. doi: 10.1016/0005-2787(70)90503-4. [DOI] [PubMed] [Google Scholar]
- Chládek S., Ringer D., Quiggle K. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Biochemistry. 1974 Jun 18;13(13):2727–2735. doi: 10.1021/bi00710a011. [DOI] [PubMed] [Google Scholar]
- Eckermann D. J., Greenwell P., Symons R. H. Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues. Eur J Biochem. 1974 Feb 1;41(3):547–554. doi: 10.1111/j.1432-1033.1974.tb03296.x. [DOI] [PubMed] [Google Scholar]
- Fahnestock S., Neumann H., Shashoua V., Rich A. Ribosome-catalyzed ester formation. Biochemistry. 1970 Jun 9;9(12):2477–2483. doi: 10.1021/bi00814a013. [DOI] [PubMed] [Google Scholar]
- Fisher L. V., Lee W. W., Goodman L. Puromycin analogs. Aminoacyl derivatives of 9-(3'-amino-3'-deoxy-beta-D-arabino-furanosyl)adenine. J Med Chem. 1970 Jul;13(4):775–777. doi: 10.1021/jm00298a058. [DOI] [PubMed] [Google Scholar]
- Gottikh B. P., Nikolayeva L. V., Krayevski A. A., Kisselev L. L. 3'(2')-O-Aminoacylnucleotides as polypeptide acceptors at the ribosomal peptidyltransferase center. FEBS Lett. 1970 Apr 2;7(2):112–113. doi: 10.1016/0014-5793(70)80133-8. [DOI] [PubMed] [Google Scholar]
- Harris R. J., Greenwell P., Symons R. H. Affinity labelling of ribosomal peptidyl transferase by a puromycin analogue. Biochem Biophys Res Commun. 1973 Nov 1;55(1):117–124. doi: 10.1016/s0006-291x(73)80067-1. [DOI] [PubMed] [Google Scholar]
- Harris R. J., Hanlon J. E., Symons R. H. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin. Biochim Biophys Acta. 1971 Jun 30;240(2):244–262. doi: 10.1016/0005-2787(71)90664-2. [DOI] [PubMed] [Google Scholar]
- Hengesh E. J., Morris A. J. Inhibition of peptide bond formation by cytidyl derivatives of puromycin. Biochim Biophys Acta. 1973 Apr 11;299(4):654–661. doi: 10.1016/0005-2787(73)90238-4. [DOI] [PubMed] [Google Scholar]
- Lessard J. L., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXII. Binding of aminoacyl-oligonucleotides to ribosomes. J Biol Chem. 1972 Nov 10;247(21):6901–6908. [PubMed] [Google Scholar]
- Mao J. C. Substrate specificity of Escherichia coli peptidyltransferase at the donor site. Biochem Biophys Res Commun. 1973 May 15;52(2):595–600. doi: 10.1016/0006-291x(73)90754-7. [DOI] [PubMed] [Google Scholar]
- Mercer J. F., Symons R. H. Peptidyl-donor substrates for ribosomal peptidyl transferase. Chemical synthesis and biological activity of N-acetyl aminoacyl di- and tri-nucleotides. Eur J Biochem. 1972 Jun 23;28(1):38–45. doi: 10.1111/j.1432-1033.1972.tb01881.x. [DOI] [PubMed] [Google Scholar]
- Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monro R. E., Marcker K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J Mol Biol. 1967 Apr 28;25(2):347–350. doi: 10.1016/0022-2836(67)90146-5. [DOI] [PubMed] [Google Scholar]
- NATHANS D. PUROMYCIN INHIBITION OF PROTEIN SYNTHESIS: INCORPORATION OF PUROMYCIN INTO PEPTIDE CHAINS. Proc Natl Acad Sci U S A. 1964 Apr;51:585–592. doi: 10.1073/pnas.51.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem Biophys Res Commun. 1969 Aug 15;36(4):589–595. doi: 10.1016/0006-291x(69)90345-3. [DOI] [PubMed] [Google Scholar]
- Pozdnyakov V. A., Mitin Yu V., Kukhanova M. K., Nikolaeva L. V., Krayevsky A. A., Gottikh B. P. On the mechanism of peptide bond synthesis in the ribosome. 3'-O-phenylalanyl-2'-O-methyladenosine as a peptide acceptor. FEBS Lett. 1972 Aug 1;24(2):177–180. doi: 10.1016/0014-5793(72)80761-0. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J Am Chem Soc. 1970 Aug 12;92(16):4963–4970. doi: 10.1021/ja00719a033. [DOI] [PubMed] [Google Scholar]
- Ringer D., Chládek S. Inhibition of the peptidyl transferase A-site function by 2'-O-aminoacyloligonucleotides. Biochem Biophys Res Commun. 1974 Feb 4;56(3):760–766. doi: 10.1016/0006-291x(74)90670-6. [DOI] [PubMed] [Google Scholar]
- Ringer D., Chládek S. Ribosomal peptidyl transferase: recognition points on the 3'-terminus of AA tRNA. FEBS Lett. 1974 Feb 1;39(1):75–78. doi: 10.1016/0014-5793(74)80020-7. [DOI] [PubMed] [Google Scholar]
- Ringer D., Quiggle K., Chládek S. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase. Biochemistry. 1975 Feb 11;14(3):514–520. doi: 10.1021/bi00674a009. [DOI] [PubMed] [Google Scholar]
- Rychlík I., Cerná J., Chládek S., Pulkrábek P., Zemlicka J. Substrate specificity of ribosomal peptidyl transferase. The effect of the nature of the amino acid side chain on the acceptor activity of 2'(3')-O-aminoacyladenosines. Eur J Biochem. 1970 Sep;16(1):136–142. doi: 10.1111/j.1432-1033.1970.tb01064.x. [DOI] [PubMed] [Google Scholar]
- Savelyev E. P., Nikolayeva L. V., Treboganov A. D., Krayevsky A. A., Gottikh B. P. Synthesis of tRNA ureido derivatives as substrates for The invention of the ribosome peptidyl transferase center. FEBS Lett. 1972 Aug 1;24(2):201–203. doi: 10.1016/0014-5793(72)80767-1. [DOI] [PubMed] [Google Scholar]
- Sundaralingam M., Arora S. K. Crystal structure of the aminoglycosyl antibiotic puromycin dihydrochloride pentahydrate. Models for the terminal 3'-aminoacyladenosine moieties of transfer RNA's and protein-nucleic acid interactions. J Mol Biol. 1972 Oct 28;71(1):49–70. doi: 10.1016/0022-2836(72)90400-7. [DOI] [PubMed] [Google Scholar]
- Sundaralingam M., Arora S. K. Stereochemistry of nucleic acids and their constituents. IX. The conformation of the antibiotic puromycin dihydrochloride pentahydrate. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1021–1026. doi: 10.1073/pnas.64.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symons R. H., Harris R. J., Clarke L. P., Wheldrake J. F., Elliott W. H. Structural requirements of inhibition of polyphenylalanine synthesis by aminoacyl and nucleotidyl analogues of puromycin. Biochim Biophys Acta. 1969 Mar 18;179(1):248–250. doi: 10.1016/0005-2787(69)90146-4. [DOI] [PubMed] [Google Scholar]
- Vanin E. F., Greenwell P., Symons R. H. Structure-activity relationships of puromycin analogues on Escherichia coli polysomes. FEBS Lett. 1974 Mar 15;40(1):124–126. doi: 10.1016/0014-5793(74)80908-7. [DOI] [PubMed] [Google Scholar]
- Vince R., Daluge S., Palm M. Inhibition of in vitro protein synthesis by a carbocyclic puromycin analog. Biochem Biophys Res Commun. 1972 Jan 31;46(2):866–870. doi: 10.1016/s0006-291x(72)80221-3. [DOI] [PubMed] [Google Scholar]
- Vince R., Daluge S. Puromycin analogs. Studies on ribosomal binding with diastereomeric carbocyclic puromycin analogs. J Med Chem. 1974 Jun;17(6):578–583. doi: 10.1021/jm00252a003. [DOI] [PubMed] [Google Scholar]
- Waller J. P., Erdös T., Lemoine F., Guttmann S., Sandrin E. Inhibition of protein synthesis by aminoacyl 3'-(2')-adenosine. Biochim Biophys Acta. 1966 Jun 22;119(3):566–580. doi: 10.1016/0005-2787(66)90133-x. [DOI] [PubMed] [Google Scholar]
- Warshaw M. M., Cantor C. R. Oligonucleotide interactions. IV. Conformational differences between deoxy- and ribodinucleoside phosphates. Biopolymers. 1970;9(9):1079–1103. doi: 10.1002/bip.1970.360090910. [DOI] [PubMed] [Google Scholar]
- de Groot N., Panet A., Lapidot Y. Reaction of puromycin with chemically prepared peptidyl transfer RNA. Eur J Biochem. 1970 Aug;15(2):215–221. doi: 10.1111/j.1432-1033.1970.tb00997.x. [DOI] [PubMed] [Google Scholar]