Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 May;2(5):613–624. doi: 10.1093/nar/2.5.613

Enzymatic synthesis of oligonucleotides of defined sequence. Addition of short blocks of nucleotide residues to oligonucleotide primers.

S Gillam, K Waterman, M Smith
PMCID: PMC343614  PMID: 167349

Abstract

Polynucleotide phosphorylase from Escherichia coli can be used to catalyse the addition of short tracts of deoxyadenylate residues to the 3'-termini of deoxyribooligonucleotides of the type pdAn-dN (where dN = dC, dT or dG) using dADP as donor. Similarly, the enzyme can also be used to catalyse the addition of short tracts of adenylate residues to the 3'-termini of ribooligonucleotides of the type An-N (where N = C, U or G) using ADP as donor. In the ribooligonucleotide series, phosphorolytic cleavage of the primer oligonucleotides is significant and results in the concommitant production of oligoadenylates lacking the N residue. Oligomers of the same length, with and without the residue N, were readily separated by thermal elution from cellulose-pdT9 columns. This latter procedure therefore provides a simple method for purification of the oligoadenylates containing an internal base substitution and it also provides a convenient assay for oligonucleotide phosphorolysis.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astell C. R., Doel M. T., Jahnke P. A., Smith M. Further studies on the properties of oligonucleotide cellulose columns. Biochemistry. 1973 Dec 4;12(25):5068–5074. doi: 10.1021/bi00749a007. [DOI] [PubMed] [Google Scholar]
  2. Astell C. R., Smith M. Synthesis and properties of oligonucleotide--cellulose columns. Biochemistry. 1972 Oct 24;11(22):4114–4120. doi: 10.1021/bi00772a014. [DOI] [PubMed] [Google Scholar]
  3. Hsieh W. T. Polymerization of deoxyribonucleoside diphosphates with an enzyme from an Escherichia coli mutant lacking deoxyribonucleic acid polymerase activity. J Biol Chem. 1971 Mar 25;246(6):1780–1784. [PubMed] [Google Scholar]
  4. Klee C. B. The proteolytic conversion of polynucleotide phosphorylase to a primer-dependent form. J Biol Chem. 1969 May 25;244(10):2558–2566. [PubMed] [Google Scholar]
  5. Leder P., Singer M. F., Brimacombe R. L. Synthesis of trinucleoside diphosphates with polynucleotide phosphorylase. Biochemistry. 1965 Aug;4(8):1561–1567. doi: 10.1021/bi00884a015. [DOI] [PubMed] [Google Scholar]
  6. Mackey J. K., Gilham P. T. New approach to the synthesis of polyribonucleotides of defined sequence. Nature. 1971 Oct 22;233(5321):551–553. doi: 10.1038/233551a0. [DOI] [PubMed] [Google Scholar]
  7. Martin F. H., Uhlenbeck O. C., Doty P. Self-complementary oligoribonucleotides: adenylic acid-uridylic acid block copolymers. J Mol Biol. 1971 Apr 28;57(2):201–215. doi: 10.1016/0022-2836(71)90341-x. [DOI] [PubMed] [Google Scholar]
  8. Moses R. E., Singer M. F. Polynucleotide phosphorylase of Micrococcus luteus. Studies on the polymerization reaction catalyzed by primer-dependent and primer-independent enzymes. J Biol Chem. 1970 May 10;245(9):2414–2422. [PubMed] [Google Scholar]
  9. Pike L. M., Rottman F. The determination of 2'-O-methylnucleosides in RNA. Anal Biochem. 1974 Oct;61(2):367–378. doi: 10.1016/0003-2697(74)90404-7. [DOI] [PubMed] [Google Scholar]
  10. SINGER M. F. Phosphorolysis of oligoribonucleotides by polynucleotide phosphorylase. J Biol Chem. 1958 May;232(1):211–228. [PubMed] [Google Scholar]
  11. TOMLINSON R. V., TENER G. M. THE EFFECT OF UREA, FORMAMIDE, AND GLYCOLS ON THE SECONDARY BINDING FORCES IN THE ION-EXCHANGE CHROMATOGRAPHY OF POLYNUCLEOTIDES OF DEAE-CELLULOSE. Biochemistry. 1963 Jul-Aug;2:697–702. doi: 10.1021/bi00904a013. [DOI] [PubMed] [Google Scholar]
  12. Thach R. E., Sundararajan T. A., Dewey K. F., Brown J. C., Doty P. Translation of synthetic messenger RNA. Cold Spring Harb Symp Quant Biol. 1966;31:85–97. doi: 10.1101/sqb.1966.031.01.015. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES