Abstract
Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors.
The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered.
The densities of corticalβ 1 and cerebellarβ 2 adrenergic receptors are reduced byca. 25%, while the densities of corticalα 1 andα 2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered.
The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%.
The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system.
Key words: caffeine, adenosine receptors, adrenergic receptors, cholinergic receptors, serotonin receptors, GABA receptors, calcium channels, dopamine receptors, NMDA receptors
References
- Abbracchio, M. P., Fogliatto, G., Paoletti, A. M., Rovati, G. E., and Cattabeni, F. (1992). Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitization of adenosine A1 but not A2 receptors.Eur. J. Pharmacol.227317–324. [DOI] [PubMed] [Google Scholar]
- Ahlijanian, M. K., and Takemori, A. E. (1986). Cross-tolerance studies between caffeine and (−)-N6-(phenylisopropyl)-adenosine (PIA) in mice.Life Sci.88577–588. [DOI] [PubMed] [Google Scholar]
- Bartrup, J. T., and Stone, T. W. (1990). Activation of NMDA receptor coupled channels suppresses the inhibitory action of adenosine on hippocampal slices.Brain Res.530330–334. [DOI] [PubMed] [Google Scholar]
- Berkowitz, B. A., and Spector, S. (1971). The effect of caffeine and theophylline on the disposition of brain serotonin in the rat.Eur. J. Pharmac.16322–325. [DOI] [PubMed] [Google Scholar]
- Berkowitz, B. A., Tarver, J. H., and Spector, S. (1970). Release of norepinephrine in the central nervous system by theophylline and caffeine.Eur. J. Pharmac.1064–71. [DOI] [PubMed] [Google Scholar]
- Boulenger, J.-P., Patel, J., Post, R. M., Parma, A. M., and Marangos, P. J. (1983). Chronic caffeine consumption increases the number of brain adenosine receptors.Life Sci.321135–1142. [DOI] [PubMed] [Google Scholar]
- Bruns, R. F., Daly, J. W., and Snyder, S. H. (1980). Adenosine receptor in brain membranes: binding of N6-cyclohexyl-[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine.Proc. Natl. Acad. Sci. USA775547–5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bylund, D. B., and Snyder, S. H. (1976). Beta adrenergic receptor binding in membrane preparations from mammalian brain.Mol. Pharmacol.12568–580. [PubMed] [Google Scholar]
- Chipkin, R. E., McQuade, R. D., and Iorio, L. C. (1987). D1 and D2 dopamine binding site up-regulation and apomorphine-induced stereotypy.Pharmacol. Biochem. Behav.28477–482. [DOI] [PubMed] [Google Scholar]
- Corrodi, H., Fuxe, K., and Jonsson, G. (1972). Effects of caffeine on central monoamine neurons.J. Pharm. Pharmac.24155–158. [DOI] [PubMed] [Google Scholar]
- Daly, J. W. (1993). Mechanism of action of caffeine. In Garattini, S. (ed.),Caffeine, Coffee and Health, Raven Press Ltd., New York, pp. 97–149. [Google Scholar]
- Daval, J. L., Deckert, J., Weiss, S. R. B., Post, R. M., and Marangos, P. J. (1989). Upregulation of adenosine A1 receptors and forskolin binding sites following chronic treatment with caffeine or carbamazepine: a quantitative autoradiographic study.Epilepsia3026–33. [DOI] [PubMed] [Google Scholar]
- Dolin, S., Little, H., Hudspith, M., Pagonis, C., and Littleton, J. (1987). Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence.Neuropharmacology26275–279. [DOI] [PubMed] [Google Scholar]
- Ehlert, F. J., Roeske, W. R., Itoga, E., and Yamamura, H. I. (1982). The binding of [3H]nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex, and ileum of rats.Life Sci.302192–2202. [DOI] [PubMed] [Google Scholar]
- Ferré, S., Fuxe, K., Von Euler, G., Johansson, B., and Fredholm, B. B. (1992). Adenosine-dopamine interactions in the brain.Neuroscience51501–512. [DOI] [PubMed] [Google Scholar]
- Ferretti, C., Blengio, M., Vigna, I., Ghi, P., and Genazzini, E. (1992). Effects of estradiol on the ontogenesis of striatal D1 and D2 receptor sites in male and female rats.Brain Res.571212–217. [DOI] [PubMed] [Google Scholar]
- Fredholm, B. B. (1982). Adenosine actions and adenosine receptors after 1 week treatment with caffeine.Acta Physiol. Scand.115283–286. [DOI] [PubMed] [Google Scholar]
- Fredholm, B. B., Jonzon, B., and Lindgren, E. (1984). Changes in noradrenaline release and in beta receptor number in rat hippocampus following long-term treatment with theophylline or L-phenylisopropyladenosine.Acta Physiol. Scand.12255–59. [DOI] [PubMed] [Google Scholar]
- Glossmann, H. and Hornung, R. (1980).α-Adrenoceptors in rat brain: sodium changes the affinity of agonists for prazosin sites.Eur. J. Pharmacol.61407–408. [DOI] [PubMed] [Google Scholar]
- Goldberg, M. R., Curatolo, P. W., Tung, C.-S., and Robertson, D. (1982). Caffeine down-regulatesβ adrenoreceptors in rat forebrain.Neuroscience Lett.3147–52. [DOI] [PubMed] [Google Scholar]
- Green, R. M., and Stiles, G. L. (1986). Chronic caffeine ingestion sensitized the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex.J. Clin. Invest.77222–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadfield, M. G., and Milio, C. (1989). Caffeine and regional brain monoamine utilization in mice.Life Sci.452637–2644. [DOI] [PubMed] [Google Scholar]
- Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V. and Hulme (1980). Pirenzipine distinguishes between different subclasses of muscarinic receptors.Nature28390–93. [DOI] [PubMed] [Google Scholar]
- Hawkins, M., Dugich, M. M., Porter, N. M., Urbancic, M., and Radulovacki, M. (1988). Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain.Brain Res. Bull.21479–482. [DOI] [PubMed] [Google Scholar]
- Hillard, C. J., and Pounds, J. J. (1993) Effects of chronic nicotine treatment on the accumulation of [3H]tetraphenylphosphonium by cerebral cortical synaptosomes.J. Neurochem.60687–695. [DOI] [PubMed] [Google Scholar]
- Holtzman, S. G., Mante, S., and Minneman, K. P. (1991). Role of adenosine receptors in caffeine tolerance.J. Pharmacol. Exp. Therap.25662–68. [PubMed] [Google Scholar]
- Jarvis, M. F., Schulz, K., Hutchison, A. J., Do, U. H., Sills, M. A., and Williams, M. (1989). [3H]CGS 21680: A selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain.J. Pharmacol. Exp. Ther.251888–893. [PubMed] [Google Scholar]
- Josselyn, S. A., and Beninger, R. J. (1991). Behavioral effects of intrastriatal caffeine mediated by adenosinergic modulation of dopamine.Pharmacol. Biochem. Behav.3997–103. [DOI] [PubMed] [Google Scholar]
- Ksir, C., Hakan, R., Hall, D. P., and Kellar, K. J. (1985) Exposure to nicotine enhances the behavioral stimulant effect of nicotine and increases the binding of [3H]acetylcholine to nicotine receptors.Neuropharmacology24527–531. [DOI] [PubMed] [Google Scholar]
- Leysen, J. E., Gompel, P. V., Gommeren, W., Woestenborghs, R., and Janssen, P. A. J. (1986). Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: ritanserin and setoperone.Psychopharmacology88434–444. [DOI] [PubMed] [Google Scholar]
- Lin, Y., and Phillis, J. W. (1990). Chronic caffeine exposure reduces the excitant action of acetylcholine on cerebral cortical neurons.Brain Res.524316–318. [DOI] [PubMed] [Google Scholar]
- Lowenstein, P. R., Vacas, M. I., and Cardinali, D. P. (1982). Effect of pentoxifylline onα- andβ-adrenoceptor sites in cerebral cortex, medial basal hypothalamus and pineal gland of the rat.Neuropharmacology21243–248. [DOI] [PubMed] [Google Scholar]
- Lupica, C. R., Berman, F. R., and Jarvis, M. F. (1991). Chronic theophylline treatment increases adenosine A1, but not A2, receptor binding in the rat brain; an autoradiographic study.Synapse9 95–102. [DOI] [PubMed] [Google Scholar]
- Marks, M. J., Stitzel, J. A., Romm, E., Wehner, J. M., and Collins, A. C. (1986). Nicotine binding sites in rat and mouse brain: comparison of acetylcholine, nicotine, andα-bungarotoxin.Mol. Pharmacol.30427–436. [PubMed] [Google Scholar]
- Martino-Barows, A. M., and Kellar, K. J. (1986). [3H]Acetyl-choline and [3H](−)nicotine label the same recognition site in rat brain.Mol. Pharmacol.31169–174. [PubMed] [Google Scholar]
- Michaluk, J., Antkiewizc-Michaluk, L., Roskosz-Pelc, A., Sansone, M., Oliver, A., and Vetulani, J. (1982). Dopamine receptor in the striatum and limbic system of various strains of mice: Relation to difference in responses to apomorphine.Pharmacol. Biochem. Behav.171115–1118. [DOI] [PubMed] [Google Scholar]
- Munson, P. J., and Rodbard, D. (1980). LIGAND: A versatile computerized approach for characterization of ligand-binding systems.Anal. Biochem.107220–239. [DOI] [PubMed] [Google Scholar]
- Nagaoka, H., Sakurada, S., Sakurada, T., Takeda, S., Nakagawa, Y., Kisara, K., and Arai, Y. (1993). Theophylline-induced nociceptive behavioral response in mice: possible indirect interaction with spinal N-methyl-D-aspartate receptors.Neurochem. Int.2269–74. [DOI] [PubMed] [Google Scholar]
- Nehlig, A., Daval, J.-L., and Debry, G. (1992). Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic, and psychostimulant effects.Brain Res. Rev.17139–170. [DOI] [PubMed] [Google Scholar]
- Nehlig, A., Daval, J.-L., Pereira de Vasconcelos, A., and Boyet (1987). Caffeine-diazepam interaction and local cerebral glucose utilization in the conscious rat.Brain Res. Rev.419272–278. [DOI] [PubMed] [Google Scholar]
- Nikodijević, O., Jacobson, K. A., and Daly, J. W. (1993). Locomotor activity in mice during chronic treatment with caffeine and withdrawal.Pharmacol. Biochem. Behav.44199–216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikodijević, O., Sarges, R., Daly, J. W., and Jacobson, K. A. (1991). Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: Evidence for syntergism and antagonism.J. Pharmacol. Exp. Therap.259286–294. [PMC free article] [PubMed] [Google Scholar]
- Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981). Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain.J. Neurochem.36220–226. [DOI] [PubMed] [Google Scholar]
- Phillis, J. W., Jiang, Z. G., Chelack, B. J., and Wu, P. H. (1980). The effect of morphine on purine and acetylcholine release from rat cerebral cortex: Evidence for a purinergic component in morphine's action.Pharmacol. Biochem. Behav.13421–427. [DOI] [PubMed] [Google Scholar]
- Porter, N. M., Radulovacki, M., and Green, R. D. (1988). Desensitization of adenosine and dopamine receptors in rat brain after treatment with adenosine analogs.J. Pharmacol. Exp. Therap.244218–225. [PubMed] [Google Scholar]
- Ramkumar, V., Bumgarner, J. R., Jacobson, K. A., and Stiles, G. L. (1988). Multiple components of the A1 adenosine-adenylate cyclase system are regulated in rat cerebral cortex by chronic caffeine ingestion.J. Clin. Invest.82242–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudolphi, K. A., Kell, M., Fastbom, J., and Fredholm, B. B. (1989). Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment.Neurosci. Lett.103275–280. [DOI] [PubMed] [Google Scholar]
- Schultz, J. E., and Schmidt, B. H. (1986). Rolipram, a stereospecific inhibitor of calmodulin-independent phosphodiesterase, causesβ-adrenoceptor subsensitivity in rat cerebral cortex.Naunyn-Schmiedeberg's Arch. Pharmacol.33323–30. [DOI] [PubMed] [Google Scholar]
- Siggins, G. R., Hoffer, B. J., and Ungerstedt, U. (1974). Electrophysiological evidence for the involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons.Life Sci.16779–792. [DOI] [PubMed] [Google Scholar]
- Szot, P., Sanders, R. C., and Murray, T. F. (1987). Theophylline-induced upregulation of A1-adenosine receptors associated with reduced sensitivity to convulsants.Neuropharmacology26 1173–1180. [DOI] [PubMed] [Google Scholar]
- U'Prichard, D. C., Greenberg, D. A., and Snyder, S. H. (1977). Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors.Mol. Pharmacol.13454–473. [PubMed] [Google Scholar]
- Valzelli, L., and Bernasconi, S. (1973). Behavioral and neurochemical effects of caffeine in normal and aggressive mice.Pharmacol. Biochem. Behav.1251–254. [DOI] [PubMed] [Google Scholar]
- Williams, M. (1987). Purine receptors in mammalian tissues: pharmacology and functional significance.Ann. Rev. Pharmacol. Toxicol.27315–345. [DOI] [PubMed] [Google Scholar]
- Wong, E. H. F., Knight, A. R., and Woodruff, G. N. (1988). [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes.J. Neurochem.50 274–281. [DOI] [PubMed] [Google Scholar]
- Wu, P. H., and Coffin, V. L. (1984). Up-regulation of brain [3H]diazepam binding sites in chronic caffeine-treated rats.Brain Res.294186–189. [DOI] [PubMed] [Google Scholar]
- Wu, P. H., and Phillis, J. W. (1986). Up-regulation of brain [3H]diazepam binding sites in chronic caffeine-treated rats.Gen. Pharmacol.17501–503. [DOI] [PubMed] [Google Scholar]
- Yamamura, H. I., and Snyder S. H. (1974). Muscarinic cholinergic binding in rat brain.Proc. Nat. Acad. Sci. USA711725–1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarbrough, G. G. (1975). Supersensitivity of caudate neurons after repeated administration of haloperidol.Eur. J. Pharmacol.31367–369. [DOI] [PubMed] [Google Scholar]
- Zielke, C. L., and Zielke, H. R. (1987). Chronic exposure to subcutaneously implanted methylxanthines. Differential elevation of A1-adenosine receptors in mouse cerebellar and cerebral cortical membranes.Biochem. Pharmacol.362533–2538. [DOI] [PubMed] [Google Scholar]