Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 May;4(5):1513–1537. doi: 10.1093/nar/4.5.1513

Shear degradation of DNA.

R E Adam, B H Zimm
PMCID: PMC343771  PMID: 19729

Abstract

A concentric-cylinder flow-birefringence instrument is used to generate sufficient shear fields to break T2 DNA (M = 1.2 X 10(8)) and E. coli DNA (M = 2.5 X 10(9)) in dilute solution. Breakage is monitored in situ by measuring the change in birefringence relaxation after the flow has been stopped. The breakage of T2 DNA follows first-order kinetics. Rate constants are obtained as functions of shear rate and viscosity (varied by adding glycerol). The data are fitted by a modified Arrhenius equation, assuming that stess increases the rate by lowering the activation energy. The rate increases with temperature, pH, and water concentration, and appears to be a base-catalyzed hydrolysis of the phosphate-ester linkage. La3+ ions catalyze the reaction. E. coli DNA was reduced to half molecules at a shear stress of 0.4 dynes/cm2, which is about 2500 times less than that required for T2. The difference in rates is accounted for in part by the difference in size of the two, but may also reflect the presence of many single-strand nicks in the coli DNA.

Full text

PDF
1513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Specificity and concentration limit in self-protection against mechanical breakage of DNA. J Mol Biol. 1962 Apr;4:313–315. doi: 10.1016/s0022-2836(62)80009-6. [DOI] [PubMed] [Google Scholar]
  2. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J Mol Biol. 1968 Feb 14;31(3):325–348. doi: 10.1016/0022-2836(68)90413-0. [DOI] [PubMed] [Google Scholar]
  3. Bowman R. D., Davidson N. Hydrodynamic shear breakage of DNA. Biopolymers. 1972;11(12):2601–2624. doi: 10.1002/bip.1972.360111217. [DOI] [PubMed] [Google Scholar]
  4. Crothers D. M., Zimm B. H. Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J Mol Biol. 1965 Jul;12(3):525–536. doi: 10.1016/s0022-2836(65)80310-2. [DOI] [PubMed] [Google Scholar]
  5. Davison P. F. THE EFFECT OF HYDRODYNAMIC SHEAR ON THE DEOXYRIBONUCLEIC ACID FROM T(2) AND T(4) BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1560–1568. doi: 10.1073/pnas.45.11.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUFF J. W., SASTRY K. S., GORDON M. P., WACKER W. E. THE ACTION OF METAL IONS ON TOBACCO MOSAIC VIRUS RIBONUCLEIC ACID. Biochemistry. 1964 Apr;3:501–506. doi: 10.1021/bi00892a006. [DOI] [PubMed] [Google Scholar]
  7. Klotz L. C., Zimm B. H. Size of DNA determined by viscoelastic measurements: results on bacteriophages, Bacillus subtilis and Escherichia coli. J Mol Biol. 1972 Dec 30;72(3):779–800. doi: 10.1016/0022-2836(72)90191-x. [DOI] [PubMed] [Google Scholar]
  8. LEVINTHAL C., DAVISON P. F. Degradation of deoxyribonucleic acid under hydrodynamic shearing forces. J Mol Biol. 1961 Oct;3:674–683. doi: 10.1016/s0022-2836(61)80030-2. [DOI] [PubMed] [Google Scholar]
  9. Massie H. R., Zimm B. H. Molecular weight of the DNA in the chromosomes of E. coli and B. subtilis. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1636–1641. doi: 10.1073/pnas.54.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. RICHARDS O. C., BOYER P. D. CHEMICAL MECHANISM OF SONIC, ACID, ALKALINE AND ENZYMIC DEGRADATION OF DNA. J Mol Biol. 1965 Feb;11:327–340. doi: 10.1016/s0022-2836(65)80061-4. [DOI] [PubMed] [Google Scholar]
  11. Thompson D. S., Gill S. J. Polymer relaxation times from birefringence relaxation measurements. J Chem Phys. 1967 Dec 15;47(12):5008–5017. doi: 10.1063/1.1701752. [DOI] [PubMed] [Google Scholar]
  12. Weissman M., Schindler H., Feher G. Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2776–2780. doi: 10.1073/pnas.73.8.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES