Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Mar;1(3):387–396. doi: 10.1093/nar/1.3.387

The molecular complexity of Mu and Pi symbiont DNA of Paramecium aurelia

AT Soldo 1, GA Godoy 1
PMCID: PMC344023  PMID: 10793673

Abstract

The molecular size of mu and pi symbionts of Parameciumaurelia has been calculated from renaturation kinetic data. Observed values were 0.78 × 109 daltons for mu particle DNA and 0.81 × 109 daltons for pi particle DNA. Estimates of analytical complexity were 4.45 × 109 and 5.05 × 109 daltons respectively. Based on these data, mu and pi symbionts appear to possess multiple genomes and contain a minimum of 5 or 6 copies of each DNA sequence.

Full text

PDF
387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastia D., Chiang K. S., Swift H., Siersma P. Heterogeneity, complexity, and repetition of the chloroplast DNA of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1157–1161. doi: 10.1073/pnas.68.6.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gillis M., De Ley J., De Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem. 1970 Jan;12(1):143–153. doi: 10.1111/j.1432-1033.1970.tb00831.x. [DOI] [PubMed] [Google Scholar]
  3. JONES A. S. The isolation of bacterial nucleic acids using cetyltrimethylammonium bromide (cetavlon). Biochim Biophys Acta. 1953 Apr;10(4):607–612. doi: 10.1016/0006-3002(53)90304-7. [DOI] [PubMed] [Google Scholar]
  4. KIRBY K. S. A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem J. 1957 Jul;66(3):495–504. doi: 10.1042/bj0660495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lanham U. N. The Blochmann bodies: hereditary intracellular symbionts of insects. Biol Rev Camb Philos Soc. 1968 Aug;43(3):269–286. doi: 10.1111/j.1469-185x.1968.tb00961.x. [DOI] [PubMed] [Google Scholar]
  7. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  8. OGUR M., ROSEN G. The nucleic acids of plant tissues; the extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch Biochem. 1950 Feb;25(2):262–276. [PubMed] [Google Scholar]
  9. Riou G., Delain E. Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of catenated forms. Proc Natl Acad Sci U S A. 1969 Jan;62(1):210–217. doi: 10.1073/pnas.62.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  11. Soldo A. T., Godoy G. A. Molecular complexity of Paramecium symbiont lambda deoxyribonucleic acid: evidence for the presence of a multicopy genome. J Mol Biol. 1973 Jan;73(1):93–108. doi: 10.1016/0022-2836(73)90161-7. [DOI] [PubMed] [Google Scholar]
  12. Soldo A. T., Godoy G. A. The kinetic complexity of Paramecium macronuclear deoxyribonucleic acid. J Protozool. 1972 Nov;19(4):673–678. doi: 10.1111/j.1550-7408.1972.tb03558.x. [DOI] [PubMed] [Google Scholar]
  13. Soldo A. T., Van Wagtendonk W. J., Godoy G. A. Nucleic acid and protein content of purified endosymbiote particles of Paramecium aurelia. Biochim Biophys Acta. 1970 Apr 15;204(2):325–333. doi: 10.1016/0005-2787(70)90150-4. [DOI] [PubMed] [Google Scholar]
  14. Stutz E. The kinetic complexity of Euglena gracilis chloroplasts DNA. FEBS Lett. 1970 May 11;8(1):25–28. doi: 10.1016/0014-5793(70)80216-2. [DOI] [PubMed] [Google Scholar]
  15. Suyama Y., Miura K. Size and structural variations of mitochondrial DNA. Proc Natl Acad Sci U S A. 1968 May;60(1):235–242. doi: 10.1073/pnas.60.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thrower K. J., Peacocke A. R. The kinetics of renaturation of DNA. Biochim Biophys Acta. 1966 Jun 22;119(3):652–654. doi: 10.1016/0005-2787(66)90148-1. [DOI] [PubMed] [Google Scholar]
  17. WEBB J. M., LEVY H. B. A sensitive method for the determination of deoxyribonucleic acid in tissues and microorganisms. J Biol Chem. 1955 Mar;213(1):107–117. [PubMed] [Google Scholar]
  18. Wells R., Sager R. Denaturation and the renaturation kinetics of chloroplast DNA from Chlamydomonas reinhardi. J Mol Biol. 1971 Jun 14;58(2):611–622. doi: 10.1016/0022-2836(71)90375-5. [DOI] [PubMed] [Google Scholar]
  19. Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES