Abstract
Aminoacyl (Phe, Gly) derivatives of nucleoside aliphatic analogues bearing a hydroxyalkyl chain have been prepared by the condensation of the alcohols with N-benzyloxycarbonyl-amino acid in the presence of DCC followed by hydrogenolysis in methanol. These compounds inhibit peptidyl transferase activity and binding of acceptor substrate to E. coli ribosomes. The inhibitory activity is not much affected by the nature of either the aminoacyl or the heterocyclic base residue. In the transfer reaction, no peptide bond formation occurs with the above compounds as acceptors.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Celma M. L., Monro R. E., Vazquez D. Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett. 1970 Feb 16;6(3):273–277. doi: 10.1016/0014-5793(70)80076-x. [DOI] [PubMed] [Google Scholar]
- Cerná J., Lichtenthaler F. W., Rychlík I. The effect of gougerotin analogues on ribosomal peptidyl transferase. FEBS Lett. 1971 Apr 12;14(1):45–48. doi: 10.1016/0014-5793(71)80271-5. [DOI] [PubMed] [Google Scholar]
- Fisher L. V., Lee W. W., Goodman L. Puromycin analogs. Aminoacyl derivatives of 9-(3'-amino-3'-deoxy-beta-D-arabino-furanosyl)adenine. J Med Chem. 1970 Jul;13(4):775–777. doi: 10.1021/jm00298a058. [DOI] [PubMed] [Google Scholar]
- Harris R., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes. J Biol Chem. 1973 Feb 25;248(4):1168–1174. [PubMed] [Google Scholar]
- Holý A., Ivanova G. S. Aliphatic analogues of nucleotides: synthesis and affinity towards nucleases. Nucleic Acids Res. 1974 Jan;1(1):19–34. doi: 10.1093/nar/1.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monro R. E., Marcker K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J Mol Biol. 1967 Apr 28;25(2):347–350. doi: 10.1016/0022-2836(67)90146-5. [DOI] [PubMed] [Google Scholar]
- Monro R. E., Vazquez D. Ribosome-catalysed peptidyl transfer: effects of some inhibitors of protein synthesis. J Mol Biol. 1967 Aug 28;28(1):161–165. doi: 10.1016/s0022-2836(67)80085-8. [DOI] [PubMed] [Google Scholar]
- NATHANS D., NEIDLE A. Structural requirements for puromycin inhibition of protein synthesis. Nature. 1963 Mar 16;197:1076–1077. doi: 10.1038/1971076a0. [DOI] [PubMed] [Google Scholar]
- Pestka S. Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli. J Biol Chem. 1972 Jul 25;247(14):4669–4678. [PubMed] [Google Scholar]
- Waller J. P., Erdös T., Lemoine F., Guttmann S., Sandrin E. Inhibition of protein synthesis by aminoacyl 3'-(2')-adenosine. Biochim Biophys Acta. 1966 Jun 22;119(3):566–580. doi: 10.1016/0005-2787(66)90133-x. [DOI] [PubMed] [Google Scholar]