Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(1):53–56. doi: 10.1073/pnas.81.1.53

Cytosolic Ca2+-dependent neutral proteinases from rabbit liver: activation of the proenzymes by Ca2+ and substrate.

S Pontremoli, E Melloni, F Salamino, B Sparatore, M Michetti, B L Horecker
PMCID: PMC344608  PMID: 6320172

Abstract

Two neutral Ca2+-dependent proteinases, differing in molecular size, have been isolated from rabbit liver. Both are recovered as inactive proenzymes that can be converted to the active forms by high (0.1-1.0 mM) concentrations of Ca2+ in the absence of substrate or, in the presence of a protein substrate, by low (1-5 microM) concentrations of Ca2+. The activated proteinases required only 1-5 microM Ca2+ for maximal activity. Substrates hydrolyzed were denatured globin, globin, casein, and to a lesser extent, several extracellular proteins; no digestion was observed with several intracellular cytosolic enzymes tested. Only those proteins that served as substrates were capable of promoting conversion of the proenzymes to the active low-Ca2+-requiring proteinases.

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dayton W. R., Goll D. E., Zeece M. G., Robson R. M., Reville W. J. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 1976 May 18;15(10):2150–2158. doi: 10.1021/bi00655a019. [DOI] [PubMed] [Google Scholar]
  2. De Martino G. N. Calcium-dependent proteolytic activity in rat liver: identification of two proteases with different calcium requirements. Arch Biochem Biophys. 1981 Oct 1;211(1):253–257. doi: 10.1016/0003-9861(81)90452-5. [DOI] [PubMed] [Google Scholar]
  3. DeMartino G. N. Cytoplasmic proteases of rat liver parenchymal cells. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1325–1330. doi: 10.1016/0006-291x(82)92145-3. [DOI] [PubMed] [Google Scholar]
  4. Gates R. E., King L. E., Jr Proteolysis of the epidermal growth factor receptor by endogenous calcium-activated neutral protease from rat liver. Biochem Biophys Res Commun. 1983 May 31;113(1):255–261. doi: 10.1016/0006-291x(83)90459-x. [DOI] [PubMed] [Google Scholar]
  5. HAYMAN S., ALBERTY R. A. The isolation and kinetics of two forms of fumarase from torula yeast. Ann N Y Acad Sci. 1961 Nov 2;94:812–824. doi: 10.1111/j.1749-6632.1961.tb35575.x. [DOI] [PubMed] [Google Scholar]
  6. Hara K., Ichihara Y., Takahashi K. Purification and characterization of a calcium-activated neutral protease from monkey cardiac muscle. J Biochem. 1983 May;93(5):1435–1445. doi: 10.1093/oxfordjournals.jbchem.a134279. [DOI] [PubMed] [Google Scholar]
  7. Hathaway D. R., Werth D. K., Haeberle J. R. Limited autolysis reduces the Ca2+ requirement of a smooth muscle Ca2+-activated protease. J Biol Chem. 1982 Aug 10;257(15):9072–9077. [PubMed] [Google Scholar]
  8. Huston R. B., Krebs E. G. Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme. Biochemistry. 1968 Jun;7(6):2116–2122. doi: 10.1021/bi00846a014. [DOI] [PubMed] [Google Scholar]
  9. Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem. 1977 Nov 10;252(21):7610–7616. [PubMed] [Google Scholar]
  10. Ishiura S., Murofushi H., Suzuki K., Imahori K. Studies of a calcium-activated neutral protease from chicken skeletal muscle. I. Purification and characterization. J Biochem. 1978 Jul;84(1):225–230. doi: 10.1093/oxfordjournals.jbchem.a132111. [DOI] [PubMed] [Google Scholar]
  11. Kosaki G., Tsujinaka T., Kambayashi J., Morimoto K., Yamamoto K., Yamagami K., Sobue K., Kakiuchi S. Specific cleavage of calmodulin-binding proteins by low Ca2+-requiring form of Ca2+-activated neutral protease in human platelets. Biochem Int. 1983 Jun;6(6):767–775. [PubMed] [Google Scholar]
  12. Mellgren R. L. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 1980 Jan 1;109(1):129–133. doi: 10.1016/0014-5793(80)81326-3. [DOI] [PubMed] [Google Scholar]
  13. Mellgren R. L., Repetti A., Muck T. C., Easly J. Rabbit skeletal muscle calcium-dependent protease requiring millimolar CA2+. Purification, subunit structure, and Ca2+-dependent autoproteolysis. J Biol Chem. 1982 Jun 25;257(12):7203–7209. [PubMed] [Google Scholar]
  14. Melloni E., Pontremoli S., Salamino F., Sparatore B., Michetti M., Horecker B. L. Characterization of three rabbit liver lysosomal proteinases with fructose 1,6-bisphosphatase converting enzyme activity. Arch Biochem Biophys. 1981 Apr 15;208(1):175–183. doi: 10.1016/0003-9861(81)90137-5. [DOI] [PubMed] [Google Scholar]
  15. Melloni E., Salamino F., Sparatore B., Michetti M., Pontremoli S. Cooperation between soluble and membrane-bound proteinases in the degradation of beta-hemoglobin chains in intact human erythrocytes. Arch Biochem Biophys. 1982 Jul;216(2):495–502. doi: 10.1016/0003-9861(82)90238-7. [DOI] [PubMed] [Google Scholar]
  16. Melloni E., Sparatore B., Salamino F., Michetti M., Pontremoli S. Cytosolic calcium dependent proteinase of human erythrocytes: formation of an enzyme-natural inhibitor complex induced by Ca2+ ions. Biochem Biophys Res Commun. 1982 Jun 15;106(3):731–740. doi: 10.1016/0006-291x(82)91772-7. [DOI] [PubMed] [Google Scholar]
  17. Nakai N., Lai C. Y., Horecker B. L. Use of fluorescamine in the chromatographic analysis of peptides from proteins. Anal Biochem. 1974 Apr;58(2):563–570. doi: 10.1016/0003-2697(74)90225-5. [DOI] [PubMed] [Google Scholar]
  18. Otsuka Y., Tanaka H. Purification of new calcium activated protease (low calcium requiring form) and comparison to high calcium requiring form. Biochem Biophys Res Commun. 1983 Mar 16;111(2):700–709. doi: 10.1016/0006-291x(83)90362-5. [DOI] [PubMed] [Google Scholar]
  19. Suzuki K., Tsuji S., Ishiura S., Kimura Y., Kubota S., Imahori K. Autolysis of calcium-activated neutral protease of chicken skeletal muscle. J Biochem. 1981 Dec;90(6):1787–1793. doi: 10.1093/oxfordjournals.jbchem.a133656. [DOI] [PubMed] [Google Scholar]
  20. Suzuki K., Tsuji S., Kubota S., Kimura Y., Imahori K. Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J Biochem. 1981 Jul;90(1):275–278. doi: 10.1093/oxfordjournals.jbchem.a133463. [DOI] [PubMed] [Google Scholar]
  21. Traniello S., Melloni E., Pontremoli S., Sia C. L., Horecker R. L. Rabbit liver fructose 1,6-diphosphatase. Properties of the native enzyme and their modification by subtilisin. Arch Biochem Biophys. 1972 Mar;149(1):222–231. doi: 10.1016/0003-9861(72)90317-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES