Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(1):160–164. doi: 10.1073/pnas.81.1.160

Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields.

M S Cooper, R E Keller
PMCID: PMC344630  PMID: 6582473

Abstract

The behavior of cultured neural crest cells of Ambystoma mexicanum and Xenopus laevis in dc electrical fields was studied. In fields of 1-5 V/cm, isolated or confluent cells retract both their anode- and cathode-facing margins. Subsequently, the cells elongate, with protrusive activity confined to their narrow ends. In larger fields (greater than or equal to 5 V/cm), protrusions form on the cathode-facing sides of the perpendicularly oriented cells. The cells then begin migrating laterally, perpendicular to their long axes, towards the cathode. We suggest that the perpendicular alignment and cathode-directed migrations result from cytoskeletal changes mediated by modified ion fluxes through the anode-facing (hyperpolarized) and cathode-facing (depolarized) cell membranes. The breaking of cellular confluence in response to dc electric fields is also discussed.

Full text

PDF
160

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker A. T., Jaffe L. F., Vanable J. W., Jr The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 1982 Mar;242(3):R358–R366. doi: 10.1152/ajpregu.1982.242.3.R358. [DOI] [PubMed] [Google Scholar]
  2. Borgens R. B., Vanable J. W., Jr, Jaffe L. F. Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J Exp Zool. 1977 Jun;200(3):403–416. doi: 10.1002/jez.1402000310. [DOI] [PubMed] [Google Scholar]
  3. Borgens R. B. What is the role of naturally produced electric current in vertebrate regeneration and healing. Int Rev Cytol. 1982;76:245–298. doi: 10.1016/s0074-7696(08)61793-3. [DOI] [PubMed] [Google Scholar]
  4. Borle A. B., Snowdowne K. W. Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science. 1982 Jul 16;217(4556):252–254. doi: 10.1126/science.6806904. [DOI] [PubMed] [Google Scholar]
  5. Bronner-Fraser M., Cohen A. M. Analysis of the neural crest ventral pathway using injected tracer cells. Dev Biol. 1980 Jun 1;77(1):130–141. doi: 10.1016/0012-1606(80)90461-3. [DOI] [PubMed] [Google Scholar]
  6. Chen W. T., Singer S. J. Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7318–7322. doi: 10.1073/pnas.77.12.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erickson C. A., Tosney K. W., Weston J. A. Analysis of migratory behavior of neural crest and fibroblastic cells in embryonic tissues. Dev Biol. 1980 Jun 1;77(1):142–156. doi: 10.1016/0012-1606(80)90462-5. [DOI] [PubMed] [Google Scholar]
  8. Harris A. K., Stopak D., Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981 Mar 19;290(5803):249–251. doi: 10.1038/290249a0. [DOI] [PubMed] [Google Scholar]
  9. Hinkle L., McCaig C. D., Robinson K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol. 1981 May;314:121–135. doi: 10.1113/jphysiol.1981.sp013695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
  11. Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
  12. Jaffe L. F., Poo M. M. Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool. 1979 Jul;209(1):115–128. doi: 10.1002/jez.1402090114. [DOI] [PubMed] [Google Scholar]
  13. Luther P. W., Peng H. B., Lin J. J. Changes in cell shape and actin distribution induced by constant electric fields. Nature. 1983 May 5;303(5912):61–64. doi: 10.1038/303061a0. [DOI] [PubMed] [Google Scholar]
  14. Nuccitelli R., Erickson C. A. Embryonic cell motility can be guided by physiological electric fields. Exp Cell Res. 1983 Aug;147(1):195–201. doi: 10.1016/0014-4827(83)90284-7. [DOI] [PubMed] [Google Scholar]
  15. Nuccitelli R., Poo M. M., Jaffe L. F. Relations between ameboid movement and membrane-controlled electrical currents. J Gen Physiol. 1977 Jun;69(6):743–763. doi: 10.1085/jgp.69.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Orida N., Feldman J. D. Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil. 1982;2(3):243–255. doi: 10.1002/cm.970020305. [DOI] [PubMed] [Google Scholar]
  17. Orida N., Poo M. M. Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature. 1978 Sep 7;275(5675):31–35. doi: 10.1038/275031a0. [DOI] [PubMed] [Google Scholar]
  18. Patel N., Poo M. M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982 Apr;2(4):483–496. doi: 10.1523/JNEUROSCI.02-04-00483.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
  20. Smith S. D. Effects of electrode placement on stimulation of adult frog limb regeneration. Ann N Y Acad Sci. 1974;238:500–507. doi: 10.1111/j.1749-6632.1974.tb26816.x. [DOI] [PubMed] [Google Scholar]
  21. Spitzer N. C. Ion channels in development. Annu Rev Neurosci. 1979;2:363–397. doi: 10.1146/annurev.ne.02.030179.002051. [DOI] [PubMed] [Google Scholar]
  22. Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES