Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(1):233–237. doi: 10.1073/pnas.81.1.233

Simple finite-element model accounts for wide range of cardiac dysrhythmias.

J M Smith, R J Cohen
PMCID: PMC344646  PMID: 6582478

Abstract

A simple finite-element model of ventricular conduction processes that explicitly incorporates spatial dispersion of refractoriness was developed. This model revealed that spatial dispersion of refractoriness is a sufficient condition to produce self-sustained reentry even in the absence of unidirectional block, inhomogeneity in local conduction velocities, or the presence of ectopic pacemakers. The model displayed a wide variety of rhythm disturbances qualitatively similar to clinically familiar cardiac dysrhythmias. Electrical stability of the model was determined as a function of the model parameters including ventricular stimulation rate, conduction velocity, and mean refractory period as well as standard deviation of refractory periods. We conclude that spatial dispersion of refractoriness is a sufficient condition to initiate reentrant dysrhythmias but that other physiologic variables such as ventricular rate and conduction velocity strongly influence the dysrhythmogenic effect of spatial dispersion of refractoriness.

Full text

PDF
233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Elharrar V., Zipes D. P. Cardiac electrophysiologic alterations during myocardial ischemia. Am J Physiol. 1977 Sep;233(3):H329–H345. doi: 10.1152/ajpheart.1977.233.3.H329. [DOI] [PubMed] [Google Scholar]
  2. HAN J., GARCIADEJALON P., MOE G. K. ADRENERGIC EFFECTS ON VENTRICULAR VULNERABILITY. Circ Res. 1964 Jun;14:516–524. doi: 10.1161/01.res.14.6.516. [DOI] [PubMed] [Google Scholar]
  3. Han J., Garcia de Jalon P. D., Moe G. K. Fibrillation threshold of premature ventricular responses. Circ Res. 1966 Jan;18(1):18–25. doi: 10.1161/01.res.18.1.18. [DOI] [PubMed] [Google Scholar]
  4. Han J. Mechanisms of ventricular arrhythmias associated with myocardial infarction. Am J Cardiol. 1969 Dec;24(6):800–813. doi: 10.1016/0002-9149(69)90469-x. [DOI] [PubMed] [Google Scholar]
  5. MOE G. K., RHEINBOLDT W. C., ABILDSKOV J. A. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964 Feb;67:200–220. doi: 10.1016/0002-8703(64)90371-0. [DOI] [PubMed] [Google Scholar]
  6. MOE G. K., RHEINBOLDT W. C., ABILDSKOV J. A. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964 Feb;67:200–220. doi: 10.1016/0002-8703(64)90371-0. [DOI] [PubMed] [Google Scholar]
  7. Moore E. N., Spear J. F. Ventricular fibrillation threshold; its physiological and pharmacological importance. Arch Intern Med. 1975 Mar;135(3):446–453. doi: 10.1001/archinte.135.3.446. [DOI] [PubMed] [Google Scholar]
  8. Naimi S., Avitall B., Mieszala J., Levine H. J. Dispersion of effective refractory period during abrupt reperfusion of ischemic myocardium in dogs. Am J Cardiol. 1977 Mar;39(3):407–412. doi: 10.1016/s0002-9149(77)80097-0. [DOI] [PubMed] [Google Scholar]
  9. Rozanski J. J., Kleinfeld M. Alternans of the ST segment of T wave. A sign of electrical instability in Prinzmetal's angina. Pacing Clin Electrophysiol. 1982 May;5(3):359–365. doi: 10.1111/j.1540-8159.1982.tb02243.x. [DOI] [PubMed] [Google Scholar]
  10. Russell D. C., Smith J. H., Oliver M. F. Transmembrane potential changes and ventricular fibrillation during repetitive myocardial ischaemia in the dog. Br Heart J. 1979 Jul;42(1):88–96. doi: 10.1136/hrt.42.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wit A. L., Cranefield P. F., Hoffman B. F. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972 Jan;30(1):11–22. doi: 10.1161/01.res.30.1.11. [DOI] [PubMed] [Google Scholar]
  12. Wit A. L., Hoffman B. F., Cranefield P. F. Slow conduction and reentry in the ventricular conducting system. I. Return extrasystole in canine Purkinje fibers. Circ Res. 1972 Jan;30(1):1–10. doi: 10.1161/01.res.30.1.1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES