Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(2):352–356. doi: 10.1073/pnas.81.2.352

Mechanism of translational control by partial phosphorylation of the alpha subunit of eukaryotic initiation factor 2.

J Siekierka, V Manne, S Ochoa
PMCID: PMC344674  PMID: 6320181

Abstract

Catalysis of ternary complex formation by the GDP exchange factor (GEF), in the presence of Mg2+, is blocked by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF-2). We proposed earlier that this phosphorylation interferes with the interaction between eIF-2 and GEF (then termed ESP). If so, inhibition should be related to the extent of phosphorylation. However, work in other laboratories indicated that in fully inhibited, heme-deficient lysates only 20-40% of the eIF-2 is phosphorylated. To understand the nature of the molecular lesion in eIF-2-alpha phosphorylation we used a system of pure components in which the rate of exchange of eIF-2-bound [3H]GDP with unlabeled GDP (via the reaction eIF-2-GDP + GEF in equilibrium eIF-2-GEF + GDP) was measured by using mixtures of eIF-2(alpha P) X [eH]GDP and eIF-2 X [3H]GDP in different proportions at constant concentration of eIF-2 X GEF. If, for example, the ratio of eIF-2 X GEF to total (phosphorylated and unphosphorylated) eIF-2 X [3H]GDP was 0.25, the exchange was found to be maximally inhibited when the proportion of eIF-2(alpha P) X [3H]GDP in hte mixture reached 25%. This suggests that the reaction stops because the available GEF is trapped in an inactive complex with eIF-2(alpha P). In the absence of free GEF, eIF-2 would not be able to recycle and initiation would come to a standstill when the available eIF-2 is tied up as eIF-2 X GDP. The trapping of GEF by eIF-s(alpha P) is strongly supported by the following observation. Incubation of eIF-2 X GEF with excess [3H]GDP leads to the formation of eIF-2 X [3H] GDP and free GEF and, if eIF-2(alpha 32P) X GDP is also present, all of the GEF is converted to eIF-2(alpha 32P) X GEF. This suggests that, whereas the equilibrium of the reaction eIF-2 X GEF + GDP in equilibrium eIF-2 X GDP + GEF favors the formation of free GEF, the equilibrium of the reaction eIF-2(alpha P) X GDP + GEF in equilibrium eIF-2(alpha P) X GEF + GDP is in favor of the association of GEF to eIF-2(alpha P).

Full text

PDF
352

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benne R., Amesz H., Hershey J. W., Voorma H. O. The activity of eukaryotic initiation factor eIF-2 in ternary complex formation with GTP and Met-tRNA. J Biol Chem. 1979 May 10;254(9):3201–3205. [PubMed] [Google Scholar]
  2. Benne R., Wong C., Luedi M., Hershey J. W. Purification and characterization of initiation factor IF-E2 from rabbit reticulocytes. J Biol Chem. 1976 Dec 10;251(23):7675–7681. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Clemens M. J., Pain V. M., Wong S. T., Henshaw E. C. Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2. Nature. 1982 Mar 4;296(5852):93–95. doi: 10.1038/296093a0. [DOI] [PubMed] [Google Scholar]
  5. Leroux A., London I. M. Regulation of protein synthesis by phosphorylation of eukaryotic initiation factor 2 alpha in intact reticulocytes and reticulocyte lysates. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2147–2151. doi: 10.1073/pnas.79.7.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Matts R. L., Levin D. H., London I. M. Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1983 May;80(9):2559–2563. doi: 10.1073/pnas.80.9.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ochoa S. Regulation of protein synthesis initiation in eucaryotes. Arch Biochem Biophys. 1983 Jun;223(2):325–349. doi: 10.1016/0003-9861(83)90598-2. [DOI] [PubMed] [Google Scholar]
  8. Siekierka J., Manne V., Mauser L., Ochoa S. Polypeptide chain initiation in eukaryotes: reversibility of the ternary complex-forming reaction. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1232–1235. doi: 10.1073/pnas.80.5.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Siekierka J., Mauser L., Ochoa S. Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the alpha subunit of initiation factor 2. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2537–2540. doi: 10.1073/pnas.79.8.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Siekierka J., Mitsui K. I., Ochoa S. Mode of action of the heme-controlled translational inhibitor: relationship of eukaryotic initiation factor 2-stimulating protein to translation restoring factor. Proc Natl Acad Sci U S A. 1981 Jan;78(1):220–223. doi: 10.1073/pnas.78.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Walton G. M., Gill G. N. Regulation of ternary (Met-tRNAf - GTP - eukaryotic initiation factor 2) protein synthesis initiation complex formation by the adenylate energy charge. Biochim Biophys Acta. 1976 Jan 19;418(2):195–203. doi: 10.1016/0005-2787(76)90069-1. [DOI] [PubMed] [Google Scholar]
  12. de Haro C., Datta A., Ochoa S. Mode of action of the hemin-controlled inhibitor of protein synthesis. Proc Natl Acad Sci U S A. 1978 Jan;75(1):243–247. doi: 10.1073/pnas.75.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. de Haro C., Ochoa S. Further studies on the mode of action of the heme-controlled translational inhibitor. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1741–1745. doi: 10.1073/pnas.76.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Haro C., Ochoa S. Mode of action of the hemin-controlled inhibitor of protein synthesis: studies with factors from rabbit reticulocytes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2713–2716. doi: 10.1073/pnas.75.6.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES