Abstract
The MoFe protein from Azotobacter vinelandii catalyzes the reduction of methylene blue and other oxidants by H2 under anaerobic conditions. H2 uptake followed manometrically or by 3H2 transfer from the gas to aqueous phase occurs concomitantly with methylene blue disappearance monitored optically or coulometrically. The stoichiometry was found to be 1:1 methylene blue/H2. MoFe protein oxidized by transfer of approximately 4 e- seems to be the redox state of the protein most active in the catalytic step, although both the S2O4(2-)-reduced and 6-e- oxidized state have been shown to react, but at a much lower rate. The presence of H2 in the atmosphere above the MoFe protein offers increased protection against O2 inactivation.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burgess B. K., Wherland S., Newton W. E., Stiefel E. I. Nitrogenase reactivity: insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry. 1981 Sep 1;20(18):5140–5146. doi: 10.1021/bi00521a007. [DOI] [PubMed] [Google Scholar]
- Dalton H., Mortenson L. E. Dinitrogen (N 2 ) fixation (with a biochemical emphasis). Bacteriol Rev. 1972 Jun;36(2):231–260. doi: 10.1128/br.36.2.231-260.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilworth M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta. 1966 Oct 31;127(2):285–294. doi: 10.1016/0304-4165(66)90383-7. [DOI] [PubMed] [Google Scholar]
- Dilworth M. J., Thorneley R. N. Nitrogenase of Klebsiella pneumoniae. Hydrazine is a product of azide reduction. Biochem J. 1981 Mar 1;193(3):971–983. doi: 10.1042/bj1930971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOCH G. E., SCHNEIDER K. C., BURRIS R. H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules. Biochim Biophys Acta. 1960 Jan 15;37:273–279. doi: 10.1016/0006-3002(60)90234-1. [DOI] [PubMed] [Google Scholar]
- HYNDMAN L. A., BURRIS R. H., WILSON P. W. Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol. 1953 May;65(5):522–531. doi: 10.1128/jb.65.5.522-531.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J., Burgess B. K., Corbin J. L. Nitrogenase reactivity: cyanide as substrate and inhibitor. Biochemistry. 1982 Aug 31;21(18):4393–4402. doi: 10.1021/bi00261a031. [DOI] [PubMed] [Google Scholar]
- Mortenson L. E., Thorneley R. N. Structure and function of nitrogenase. Annu Rev Biochem. 1979;48:387–418. doi: 10.1146/annurev.bi.48.070179.002131. [DOI] [PubMed] [Google Scholar]
- Smith L. A., Hill S., Yates M. G. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature. 1976 Jul 15;262(5565):209–210. doi: 10.1038/262209a0. [DOI] [PubMed] [Google Scholar]
- Watt G. D. An electrochemical method for measuring redox potentials of low potential proteins by microcoulometry at controlled potentials. Anal Biochem. 1979 Nov 1;99(2):399–407. doi: 10.1016/s0003-2697(79)80024-x. [DOI] [PubMed] [Google Scholar]
- Watt G. D., Burns A., Tennent D. L. Stoichiometry and spectral properties of the MoFe cofactor and noncofactor redox centers in the MoFe protein of nitrogenase from Azotobacter vinelandii. Biochemistry. 1981 Dec 8;20(25):7272–7277. doi: 10.1021/bi00528a034. [DOI] [PubMed] [Google Scholar]
- Zumft W. G., Mortenson L. E. The nitrogen-fixing complex of bacteria. Biochim Biophys Acta. 1975 Mar 31;416(1):1–52. doi: 10.1016/0304-4173(75)90012-9. [DOI] [PubMed] [Google Scholar]
