Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(2):635–639. doi: 10.1073/pnas.81.2.635

Changes in local cerebral glucose utilization during rewarding brain stimulation.

R U Esposito, L J Porrino, T F Seeger, A M Crane, H D Everist, A Pert
PMCID: PMC344734  PMID: 6582517

Abstract

The quantitative 2-deoxy[14C]glucose method was used to determine local cerebral glucose utilization in unrestrained rats responding (lever-press) for rewarding electrical stimulation to area A10 (ventral tegmental area) and in similarly implanted inactive controls. Self-stimulation was associated with significant increases in metabolic activity, highly circumscribed in the ventral tegmental area, that continued rostrally within a rather compact zone of activity through the medial forebrain bundle, extending via the diagonal band of Broca to the level of the preoptic area. In the forebrain terminal areas bilateral increases in local cerebral glucose utilization were noted in the nucleus accumbens, lateral septum, hippocampus, and the mediodorsal nucleus of the thalamus. Ipsilateral (i.e., side of stimulation) increases in glucose utilization were noted in the bed nucleus of the stria terminalis, the basolateral and central amygdaloid nuclei, and the medial prefrontal cortex. Caudal to the stimulation site, increases in glucose utilization were found in the midline dorsal raphe, the ipsilateral pontine gray, medial parabrachial nucleus, and the locus coeruleus. Significant bilateral increases were noted in various sensory and motor areas. These results indicate that rather than a diffuse pattern of activity, rewarding brain stimulation is associated with discrete activation of specific neuronal projection fibers and selective terminal sites.

Full text

PDF
635

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckstead R. M., Domesick V. B., Nauta W. J. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 1979 Oct 19;175(2):191–217. doi: 10.1016/0006-8993(79)91001-1. [DOI] [PubMed] [Google Scholar]
  2. Crow T. J. Catecholamine-containing neurones and electrical self-stimulation. 2. A theoretical interpretation and some psychiatric implications. Psychol Med. 1973 Feb;3(1):66–73. doi: 10.1017/s0033291700046353. [DOI] [PubMed] [Google Scholar]
  3. Fallon J. H., Koziell D. A., Moore R. Y. Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol. 1978 Aug 1;180(3):509–532. doi: 10.1002/cne.901800308. [DOI] [PubMed] [Google Scholar]
  4. German D. C., Bowden D. M. Catecholamine systems as the neural substrate for intracranial self-stimulation: a hypothesis. Brain Res. 1974 Jun 28;73(3):381–419. doi: 10.1016/0006-8993(74)90666-0. [DOI] [PubMed] [Google Scholar]
  5. Goochee C., Rasband W., Sokoloff L. Computerized densitometry and color coding of [14C] deoxyglucose autoradiographs. Ann Neurol. 1980 Apr;7(4):359–370. doi: 10.1002/ana.410070414. [DOI] [PubMed] [Google Scholar]
  6. JOHANSEN K. REGIONAL DISTRIBUTION OF CIRCULATING BLOOD DURING SUBMERSION ASPHYXIA IN THE DUCK. Acta Physiol Scand. 1964 Sep-Oct;62:1–9. doi: 10.1111/j.1748-1716.1964.tb03945.x. [DOI] [PubMed] [Google Scholar]
  7. Lindvall O., Björklund A., Moore R. Y., Stenevi U. Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 1974 Dec 6;81(2):325–331. doi: 10.1016/0006-8993(74)90947-0. [DOI] [PubMed] [Google Scholar]
  8. Lindvall O., Björklund A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl. 1974;412:1–48. [PubMed] [Google Scholar]
  9. Lindvall O. Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat. Brain Res. 1975 Apr 4;87(1):89–95. doi: 10.1016/0006-8993(75)90785-4. [DOI] [PubMed] [Google Scholar]
  10. OLDS J. Hypothalamic substrates of reward. Physiol Rev. 1962 Oct;42:554–604. doi: 10.1152/physrev.1962.42.4.554. [DOI] [PubMed] [Google Scholar]
  11. OLDS J., MILNER P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954 Dec;47(6):419–427. doi: 10.1037/h0058775. [DOI] [PubMed] [Google Scholar]
  12. Phillips A. G., Fibiger H. C. The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Can J Psychol. 1978 Jun;32(2):58–66. doi: 10.1037/h0081676. [DOI] [PubMed] [Google Scholar]
  13. Price J. L., Amaral D. G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci. 1981 Nov;1(11):1242–1259. doi: 10.1523/JNEUROSCI.01-11-01242.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SEWARD J. P., UYEDA A., OLDS J. Resistance to extinction following cranial self-stimulation. J Comp Physiol Psychol. 1959 Jun;52(3):294–299. doi: 10.1037/h0049300. [DOI] [PubMed] [Google Scholar]
  15. Simon H., Le Moal M., Calas A. Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Res. 1979 Dec 7;178(1):17–40. doi: 10.1016/0006-8993(79)90085-4. [DOI] [PubMed] [Google Scholar]
  16. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  17. Yadin E., Guarini V., Gallistel C. R. Unilaterally activated systems in rats self-stimulating at sites in the medial forebrain bundle, medial prefrontal cortex, or locus coeruleus. Brain Res. 1983 Apr 25;266(1):39–50. doi: 10.1016/0006-8993(83)91307-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES