Abstract
The fluorescent proteinase transition-state analog inhibitor, dansyl-L-argininal (DnsArgH), may be a selective probe of cysteine and serine-type proteinases in a fibrosarcoma tumor cell line (HSDM1C1). DnsArgH binds with high affinity to proteinases because of its transition-state analog properties, and on association it gives a dramatically increased fluorescent yield. The DnsArgH binding is inhibited by the serine proteinase inhibitor diisopropyl fluorophosphate and by the cysteine proteinase inhibitor p-chloromercuribenzoate. The fluorescence emission appears at its maximum steady-state yield immediately on addition of DnsArgH to the HSDM1C1 fibrosarcoma cells. The immediacy of the DnsArgH reaction supports the contention that DnsArgH binding may be to cell surface-associated proteinases. Quantification of the cell proteinase concentration, by comparison of the fluorescence yield obtained from DnsArgH interactions with bovine trypsin and papain, indicates 10(-15) to 10(-16) mol of proteinase per HSDM1C1 cell. In fluorescence microscopy, DnsArgH fluorescence appears distributed throughout the fibrosarcoma cell without association to organelles. DnsArgH fluorescence from normal fibroblast controls (IMR-90) was found to be substantially lower than in the transformed fibrosarcoma cells, supporting a hypothesis that proteinases have a role in malignancy.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON A. C., YOUNG M. R. UPTAKE OF DYES AND DRUGS BY LIVING CELLS IN CULTURE. Life Sci. 1964 Dec;3:1407–1414. doi: 10.1016/0024-3205(64)90082-7. [DOI] [PubMed] [Google Scholar]
- Bourgeois J. -P., Ryter A., Menez A., Fromageot P., Boquet P., Changeux J. -P. Localization of the cholinergic receptor protein in Electrophorus electroplax by high resolution autoradiography. FEBS Lett. 1972 Sep 1;25(1):127–133. doi: 10.1016/0014-5793(72)80469-1. [DOI] [PubMed] [Google Scholar]
- Brayer G. D., Delbaere L. T., James M. N., Bauer C. A., Thompson R. C. Crystallographic and kinetic investigations of the covalent complex formed by a specific tetrapeptide aldehyde and the serine protease from Streptomyces griseus. Proc Natl Acad Sci U S A. 1979 Jan;76(1):96–100. doi: 10.1073/pnas.76.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burger M. M. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature. 1970 Jul 11;227(5254):170–171. doi: 10.1038/227170a0. [DOI] [PubMed] [Google Scholar]
- Chen R., Gorenstein D. G., Kennedy W. P., Lowe G., Nurse D., Schultz R. M. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy. Biochemistry. 1979 Mar 6;18(5):921–926. doi: 10.1021/bi00572a030. [DOI] [PubMed] [Google Scholar]
- DiStefano J. F., Beck G., Lane B., Zucker S. Role of tumor cell membrane-bound serine proteases in tumor-induced target cytolysis. Cancer Res. 1982 Jan;42(1):207–218. [PubMed] [Google Scholar]
- Frankfater A., Kuppy T. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry. 1981 Sep 15;20(19):5517–5524. doi: 10.1021/bi00522a026. [DOI] [PubMed] [Google Scholar]
- Graf M., Leeman U., Ruch F., Sträuli P. The fluorescence and bright field microscopic demonstration of cathepsin B in human fibroblasts. Histochemistry. 1979;64(3):319–322. doi: 10.1007/BF00495033. [DOI] [PubMed] [Google Scholar]
- Hatcher V. B., Wertheim M. S., Rhee C. Y., Tsien G., Burk P. G. Relationship between cell surface protease activity and doubling time in various normal and transformed cells. Biochim Biophys Acta. 1976 Dec 21;451(2):499–510. doi: 10.1016/0304-4165(76)90145-8. [DOI] [PubMed] [Google Scholar]
- Jaken S., Black P. H. Differences in intracellular distribution of plasminogen activator in growing, confluent, and transformed 3T3 cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):246–250. doi: 10.1073/pnas.76.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy W. P., Schultz R. M. Mechanism of association of a specific aldehyde "transition-state analogue" to the active site of alpha-chymotrypsin. Biochemistry. 1979 Jan 23;18(2):349–356. doi: 10.1021/bi00569a019. [DOI] [PubMed] [Google Scholar]
- LaBombardi V. J., Shaw E., DiStefano J. F., Beck G., Brown F., Zucker S. Isolation and characterization of a trypsin-like serine proteinase from the membranes of Walker 256 carcino-sarcoma cells. Biochem J. 1983 Jun 1;211(3):695–700. doi: 10.1042/bj2110695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lienhard G. E. Enzymatic catalysis and transition-state theory. Science. 1973 Apr 15;180(4082):149–154. doi: 10.1126/science.180.4082.149. [DOI] [PubMed] [Google Scholar]
- Maeda K., Kawamura K., Kondo S., Aoyagi T., Takeuchi T. The structure and activity of leupeptins and related analogs. J Antibiot (Tokyo) 1971 Jun;24(6):402–404. doi: 10.7164/antibiotics.24.402. [DOI] [PubMed] [Google Scholar]
- Martin B. M., Quigley J. P. Binding and internalization of 125I thrombin in chick embryo fibroblasts: possible role in mitogenesis. J Cell Physiol. 1978 Aug;96(2):155–164. doi: 10.1002/jcp.1040960204. [DOI] [PubMed] [Google Scholar]
- Matthews I. T., Decker R. S., Hornebeck W., Knight C. G. Dinitrophenyl-pepstatins as active-site-directed localization reagents for cathepsin D. Biochem J. 1983 Apr 1;211(1):139–147. doi: 10.1042/bj2110139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozanne B., Sambrook J. Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells. Nat New Biol. 1971 Aug 4;232(31):156–160. doi: 10.1038/newbio232156a0. [DOI] [PubMed] [Google Scholar]
- Pietras R. J., Roberts J. A. Cathepsin B-like enzymes. Subcellular distribution and properties in neoplastic and control cells from human ectocervix. J Biol Chem. 1981 Aug 25;256(16):8536–8544. [PubMed] [Google Scholar]
- Poole A. R., Dingle J. T., Barrett A. J. The immunocytochemical demonstration of cathepsin D. J Histochem Cytochem. 1972 Apr;20(4):261–265. doi: 10.1177/20.4.261. [DOI] [PubMed] [Google Scholar]
- Quigley J. P. Association of a protease (plasminogen activator) with a specific membrane fraction isolated from transformed cells. J Cell Biol. 1976 Nov;71(2):472–486. doi: 10.1083/jcb.71.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Recklies A. D., Tiltman K. J., Stoker T. A., Poole A. R. Secretion of proteinases from malignant and nonmalignant human breast tissue. Cancer Res. 1980 Mar;40(3):550–556. [PubMed] [Google Scholar]
- Rifkin D. B., Loeb J. N., Moore G., Reich E. Properties of plasminogen activators formed by neoplastic human cell cultures. J Exp Med. 1974 May 1;139(5):1317–1328. doi: 10.1084/jem.139.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spataro A. C., Morgan H. R., Bosmann H. B. Neutral protease activity of Rous sarcoma (RSV) transformed chick embryo fibroblasts. J Cell Sci. 1976 Jul;21(2):407–413. doi: 10.1242/jcs.21.2.407. [DOI] [PubMed] [Google Scholar]
- Steven F. S., Griffin M. M., Itzhaki S., Al-Habib A. A trypsin-like neutral protease on Ehrlich ascites cell surfaces: its role in the activation of tumour-cell zymogen of collagenase. Br J Cancer. 1980 Nov;42(5):712–721. doi: 10.1038/bjc.1980.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sylvén B., Snellman O., Sträuli P. Immunofluorescent studies on the occurrence of cathepsin B1 at tumor cell surfaces. Virchows Arch B Cell Pathol. 1974;17(2):97–112. doi: 10.1007/BF02912840. [DOI] [PubMed] [Google Scholar]
- Thompson R. C., Bauer C. A. Reaction of peptide aldehydes with serine proteases. Implications for the entropy changes associated with enzymatic catalysis. Biochemistry. 1979 Apr 17;18(8):1552–1558. doi: 10.1021/bi00575a026. [DOI] [PubMed] [Google Scholar]
- Thompson R. C. Peptide aldehydes: potent inhibitors of serine and cysteine proteases. Methods Enzymol. 1977;46:220–225. doi: 10.1016/s0076-6879(77)46023-3. [DOI] [PubMed] [Google Scholar]
- Thompson R. C. Use of peptide aldehydes to generate transition-state analogs of elastase. Biochemistry. 1973 Jan 2;12(1):47–51. doi: 10.1021/bi00725a009. [DOI] [PubMed] [Google Scholar]
- Unkeless J. C., Tobia A., Ossowski L., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):85–111. doi: 10.1084/jem.137.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerik J. O., Wolfenden R. Aldehydes as inhibitors of papain. J Biol Chem. 1972 Dec 25;247(24):8195–8197. [PubMed] [Google Scholar]



