Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Mar;81(5):1366–1370. doi: 10.1073/pnas.81.5.1366

Increased rates of polypeptide chain elongation in placental explants from human diabetics.

J Ilan, D R Pierce, A A Hochberg, R Folman, M T Gyves
PMCID: PMC344834  PMID: 6584885

Abstract

Average rates of polypeptide chain elongation were determined in placental explants of first trimester and term placentas from both normal and diabetic human pregnancies. Average ribosome half-transit times were determined by measuring the kinetics of transfer of labeled polypeptides from polysomal-bound to released polypeptides. The average half-transit time decreases from 75 sec per ribosome in first trimester explants to 56 sec per ribosome in term placentas. The average polypeptide molecular weights synthesized by explants from first trimester and in term are 49,300 and 49,600, respectively, which are not significantly different. The average elongation rates for first trimester and term placental explants are 172 and 231 amino acids per minute per ribosome, respectively, which are significantly different. Moreover, the average polypeptide molecular weight synthesized by term placentas from diabetic pregnancies is 48,200, while the average ribosome half-transit time is 40 sec. Thus, ribosomes from explants of term placenta from diabetics move along the average message at a much higher speed than do ribosomes in normal term tissue. The assembly rate of amino acid into polypeptide in explant of placenta of diabetic mothers is 314 amino acids per minute, which is significantly faster than 231 amino acids per minute in normal term tissue. These findings indicate that during placental development and in diabetic pregnancy there is a large change in the actual rates at which amino acids are added to the nascent polypeptide chain--i.e., the rates in polypeptide chain elongation. Therefore, translation-level regulation of protein synthesis in placenta plays a significant part in the magnitude of the response to developmental and other physiological stimulations.

Full text

PDF
1366

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boime I., Boothby M., Hoshina M., Daniels-McQueen S., Darnell R. Expression and structures of human placental hormone genes as a function of placental development. Biol Reprod. 1982 Feb;26(1):73–91. doi: 10.1095/biolreprod26.1.73. [DOI] [PubMed] [Google Scholar]
  2. Brandis J. W., Raff R. A. Elevation of protein synthesis is a complex response to fertilisation. Nature. 1979 Mar 29;278(5703):467–469. doi: 10.1038/278467a0. [DOI] [PubMed] [Google Scholar]
  3. Brandis J. W., Raff R. A. Translation of oogenetic mRNA in sea urchin eggs and early embryos. Demonstration of a change in translational efficiency following fertilization. Dev Biol. 1978 Nov;67(1):99–113. doi: 10.1016/0012-1606(78)90303-2. [DOI] [PubMed] [Google Scholar]
  4. Currie A. R., Beck J. S., Ellis S. T., Read C. H. Immunofluorescent localisation of a growth hormone-like factor in normal and abnormal syncytiotrophoblast. J Pathol Bacteriol. 1966 Oct;92(2):395–399. doi: 10.1002/path.1700920217. [DOI] [PubMed] [Google Scholar]
  5. Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
  6. Garel J. P. Functional adaptation of tRNA population. J Theor Biol. 1974 Jan;43(1):211–225. doi: 10.1016/s0022-5193(74)80054-8. [DOI] [PubMed] [Google Scholar]
  7. Gehrke L., Bast R. E., Ilan J. An analysis of rates of polypeptide chain elongation in avian liver explants following in vivo estrogen treatment. I. Determination of average rates of polypeptide chain elongation. J Biol Chem. 1981 Mar 10;256(5):2514–2521. [PubMed] [Google Scholar]
  8. Gehrke L., Bast R. E., Ilan J. An analysis of rates of polypeptide chain elongation in avian liver explants following in vivo estrogen treatment. II. Determination of the specific rates of elongation of serum albumin and vitellogenin nascent chains. J Biol Chem. 1981 Mar 10;256(5):2522–2530. [PubMed] [Google Scholar]
  9. Golini F., Thach S. S., Birge C. H., Safer B., Merrick W. C., Thach R. E. Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory initiation factor. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3040–3044. doi: 10.1073/pnas.73.9.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hille M. B., Albers A. A. Efficiency of protein synthesis after fertilisation of sea urchin eggs. Nature. 1979 Mar 29;278(5703):469–471. doi: 10.1038/278469a0. [DOI] [PubMed] [Google Scholar]
  11. Holder J. W., Lingrel J. B. Determination of secondary structure in rabbit globin messenger RNA by thermal denaturation. Biochemistry. 1975 Sep 23;14(19):4209–4215. doi: 10.1021/bi00690a009. [DOI] [PubMed] [Google Scholar]
  12. Hubert C., Mondon F., Cedard L. Distribution, quantification and biological activity of messenger RNA coding for human chorionic somatomammotropin during normal pregnancy. Mol Cell Endocrinol. 1981 Dec;24(3):339–355. doi: 10.1016/0303-7207(81)90008-3. [DOI] [PubMed] [Google Scholar]
  13. Hunt T., Hunter T., Munro A. Control of haemoglobin synthesis: distribution of ribosomes on the messenger RNA for alpha and beta chains. J Mol Biol. 1968 Aug 28;36(1):31–45. doi: 10.1016/0022-2836(68)90217-9. [DOI] [PubMed] [Google Scholar]
  14. Ilan J., Ilan J. Requirement for homologous rabbit reticulocyte initiation factor 3 for initiation of alpha- and beta-globin mRNA translation in a crude protozoal cell-free system. J Biol Chem. 1976 Sep 25;251(18):5718–5725. [PubMed] [Google Scholar]
  15. Ilan J., Ilan J. Unwinding protein specific for mRNA translation fractionated together with rabbit reticulocyte initiation factor 3 complex. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2325–2329. doi: 10.1073/pnas.74.6.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JOSIMOVICH J. B., ATWOOD B. L. HUMAN PLACENTAL LACTOGEN (HPL), A TROPHOBLASTIC HORMONE SYNERGIZING WITH CHORIONIC GONASOTROPIN AND POTENTIATING THE ANABOLIC EFFECTS OF PITUITARY GROWTH HORMONE. Am J Obstet Gynecol. 1964 Apr 1;88:867–879. doi: 10.1016/0002-9378(64)90734-3. [DOI] [PubMed] [Google Scholar]
  17. Kabat D., Chappell M. R. Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J Biol Chem. 1977 Apr 25;252(8):2684–2690. [PubMed] [Google Scholar]
  18. Kanerva P. A., Mäenpä P. H. Codon-specific serine transfer ribonucleic acid synthesis in avian liver during vitellogenin induction. Acta Chem Scand B. 1978;B32(8):561–568. doi: 10.3891/acta.chem.scand.32b-0561. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell. 1980 Jan;19(1):79–90. doi: 10.1016/0092-8674(80)90390-6. [DOI] [PubMed] [Google Scholar]
  20. Mäenpä P. H., Bernfield M. R. Subcellular redistribution of seryl-transfer RNA during estrogen-induced phosvitin synthesis and specificity of the estrogen effect. Biochemistry. 1975 Nov 4;14(22):4820–4826. doi: 10.1021/bi00693a007. [DOI] [PubMed] [Google Scholar]
  21. Palmiter R. D. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. doi: 10.1021/bi00714a032. [DOI] [PubMed] [Google Scholar]
  22. Palmiter R. D. Regulation of protein synthesis in chick oviduct. II. Modulation of polypeptide elongation and initiation rates by estrogen and progesterone. J Biol Chem. 1972 Nov 10;247(21):6770–6780. [PubMed] [Google Scholar]
  23. Pavlakis G. N., Lockard R. E., Vamvakopoulos N., Rieser L., RajBhandary U. L., Vournakis J. N. Secondary structure of mouse and rabbit alpha- and beta-globin mRNAs: differential accessibility of alpha and beta initiator AUG codons towards nucleases. Cell. 1980 Jan;19(1):91–102. doi: 10.1016/0092-8674(80)90391-8. [DOI] [PubMed] [Google Scholar]
  24. Roper M. D., Wicks W. D. Evidence for acceleration of the rate of elongation of tyrosine aminotransferase nascent chains by dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1978 Jan;75(1):140–144. doi: 10.1073/pnas.75.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCIARRA J. J., KAPLAN S. L., GRUMBACH M. M. LOCALIZATION OF ANTI-HUMAN GROWTH HORMONE SERUM WITHIN THE HUMAN PLACENTA: EVIDENCE FOR A HUMAN CHORIONIC 'GROWTH HORMONE-PROLACTIN'. Nature. 1963 Sep 7;199:1005–1006. doi: 10.1038/1991005a0. [DOI] [PubMed] [Google Scholar]
  26. Selenkow H. A., Varma K., Younger D., White P., Emerson K., Jr Patterns of serum immunoreactive human placental lactogen (IR-HPL) and chorionic gonadotropin (IR-HCG) in diabetic pregnancy. Diabetes. 1971 Oct;20(10):696–706. doi: 10.2337/diab.20.10.696. [DOI] [PubMed] [Google Scholar]
  27. Shelley H. J., Neligan G. A. Neonatal hypoglycaemia. Br Med Bull. 1966 Jan;22(1):34–39. doi: 10.1093/oxfordjournals.bmb.a070433. [DOI] [PubMed] [Google Scholar]
  28. Smith R. L., Baca O., Gordon J. Co-ordinate synthesis of ribosomes and elongation factors in the liver of immature chicks following a metabolic shift up. J Mol Biol. 1976 Jan 15;100(2):115–126. doi: 10.1016/s0022-2836(76)80143-x. [DOI] [PubMed] [Google Scholar]
  29. Spellacy W. N., Carlson K. L., Birk S. A. Human placental lactogen levels as a variable of placental weight and infant weight. Am J Obstet Gynecol. 1966 May 1;95(1):118–119. doi: 10.1016/0002-9378(66)90638-7. [DOI] [PubMed] [Google Scholar]
  30. Teoh E. S., Spellacy W. N., Buhi W. C. Human chorionic somatomammotrophin (HCS): a new index of placental function. J Obstet Gynaecol Br Commonw. 1971 Aug;78(8):673–685. doi: 10.1111/j.1471-0528.1971.tb01628.x. [DOI] [PubMed] [Google Scholar]
  31. Van N. T., Holder J. W., Woo S. L., Means A. R., O'Malley B. W. Secondary structure of ovalbumin messenger RNA. Biochemistry. 1976 May 18;15(10):2054–2062. doi: 10.1021/bi00655a005. [DOI] [PubMed] [Google Scholar]
  32. Walden W. E., Godefroy-Colburn T., Thach R. E. The role of mRNA competition in regulating translation. I. Demonstration of competition in vivo. J Biol Chem. 1981 Nov 25;256(22):11739–11746. [PubMed] [Google Scholar]
  33. Weinstein D., Galski H., Schenker J. G., Lorberboum H., de Groot N., Ilan J., Folman R., Hochberg A. A. The synthesis and secretion of human placental lactogen (hPL) in cultured term placenta. Mol Cell Endocrinol. 1982 Apr;26(1-2):189–199. doi: 10.1016/0303-7207(82)90016-8. [DOI] [PubMed] [Google Scholar]
  34. Whelly S. M., Barker K. L. Regulation of the peptide elongation reaction on uterine ribosomes by estrogens. J Steroid Biochem. 1982 Apr;16(4):495–501. doi: 10.1016/0022-4731(82)90069-3. [DOI] [PubMed] [Google Scholar]
  35. Williamson R., Morrison M., Lanyon G., Eason R., Paul J. Properties of mouse globin messenger ribonucleic acid and its preparation in milligram quantities. Biochemistry. 1971 Aug 3;10(16):3014–3021. doi: 10.1021/bi00792a005. [DOI] [PubMed] [Google Scholar]
  36. de Ikonicoff L. K., Cedard L. Localization of human chorionic gonadotropic and somatomammotropic hormones by the peroxidase immunohistoenzymologic method in villi and amniotic epithelium of human placentas (from six weeks to term). Am J Obstet Gynecol. 1973 Aug 15;116(8):1124–1132. doi: 10.1016/0002-9378(73)90948-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES