Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Feb;81(3):781–784. doi: 10.1073/pnas.81.3.781

Exposure of nondividing populations of primary human fibroblasts to UV (254 nm) radiation induces a transient enhancement in capacity to repair potentially lethal cellular damage.

R M Tyrrell
PMCID: PMC344920  PMID: 6583677

Abstract

Nondividing (arrested) populations of primary human fibroblasts from normal individuals exposed to an initial dose (1.5 or 3 J X m-2) of far-UV (254 nm) radiation and then incubated in medium containing low (0.5%) serum develop enhanced resistance to inactivation of cloning efficiency by a second (challenge) dose of UV. The resistance develops within 2-4 days, after which there is a decline. Resistance develops to a higher degree and more rapidly (1-2 days) in cells derived from patients with the variant form of xeroderma pigmentosum. Excision-deficient cells from xeroderma pigmentosum complementation group A individuals also develop UV resistance after a lower (0.2 J X m-2) exposure to UV. Enhanced UV resistance does not develop in UV-irradiated cell populations incubated with the protein synthesis inhibitor cycloheximide (5 microM). These observations are consistent with the interpretation that exposure of human fibroblasts to low doses of UV induces synthesis of a protein involved in a metabolic pathway that transiently enhances the capacity of cells to repair potentially lethal damage resulting from a subsequent dose of UV.

Full text

PDF
781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bockstahler L. E. Induction and enhanced reactivation of mammalian viruses by light. Prog Nucleic Acid Res Mol Biol. 1981;26:303–313. doi: 10.1016/s0079-6603(08)60413-4. [DOI] [PubMed] [Google Scholar]
  2. Bockstahler L. E., Lytle C. D. Ultraviolet light enhanced reactivation of a mammalian virus. Biochem Biophys Res Commun. 1970 Oct 9;41(1):184–189. doi: 10.1016/0006-291x(70)90486-9. [DOI] [PubMed] [Google Scholar]
  3. Chan G. L., Little J. B. Effects of fluence fractionation on UV-induced malignant transformation and cell killing in non-cycling plateau phase mouse cells. Photochem Photobiol. 1982 Oct;36(4):409–411. doi: 10.1111/j.1751-1097.1982.tb04394.x. [DOI] [PubMed] [Google Scholar]
  4. Chan G. L., Little J. B. Resistance of plateau-phase human normal and xeroderma pigmentosum fibroblasts to the cytotoxic effect of ultraviolet light. Mutat Res. 1979 Dec;63(2):401–412. doi: 10.1016/0027-5107(79)90072-1. [DOI] [PubMed] [Google Scholar]
  5. Chang C. C., D'Ambrosio S. M., Schultz R., Trosko J. E., Setlow R. B. Modification of UV-induced mutation frequencies in Chinese hamster cells by dose fractionation, cycloheximide and caffeine treatments. Mutat Res. 1978 Nov;52(2):231–245. doi: 10.1016/0027-5107(78)90144-6. [DOI] [PubMed] [Google Scholar]
  6. Coppey J., Menezes S. Enhanced reactivation of ultraviolet-damaged herpes virus in ultraviolet pretreated skin fibroblasts of cancer prone donors. Carcinogenesis. 1981;2(8):787–793. doi: 10.1093/carcin/2.8.787. [DOI] [PubMed] [Google Scholar]
  7. Cornelis J. J., Lupker J. H., van der Eb A. J. UV-reactivation, virus production and mutagenesis of SV40 in VU-irradiated monkey kidney cells. Mutat Res. 1980 Jun;71(1):139–146. doi: 10.1016/0027-5107(80)90014-7. [DOI] [PubMed] [Google Scholar]
  8. Cornelis J. J., Su Z. Z., Ward D. C., Rommelaere J. Indirect induction of mutagenesis of intact parvovirus H-1 in mammalian cells treated with UV light or with UV-irradiated H-1 or simian virus 40. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4480–4484. doi: 10.1073/pnas.78.7.4480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Ambrosio S. M., Setlow R. B. Enhancement of postreplication repair in Chinese hamster cells. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2396–2400. doi: 10.1073/pnas.73.7.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DasGupta U. B., Summers W. C. Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mammlian cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2378–2381. doi: 10.1073/pnas.75.5.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dell'Orco R. T., Mertens J. G., Kruse P. F., Jr Doubling potential, calendar time, and senescence of human diploid cells in culture. Exp Cell Res. 1973 Mar 15;77(1):356–360. doi: 10.1016/0014-4827(73)90588-0. [DOI] [PubMed] [Google Scholar]
  12. Fornace A. J., Jr, Kohn K. W., Kann H. E., Jr DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum. Proc Natl Acad Sci U S A. 1976 Jan;73(1):39–43. doi: 10.1073/pnas.73.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kantor G. J., Warner C., Hull D. R. The effect of ultraviolet light on arrested human diploid cell populations. Photochem Photobiol. 1977 May;25(5):483–489. doi: 10.1111/j.1751-1097.1977.tb09174.x. [DOI] [PubMed] [Google Scholar]
  14. Lackey D., Krauss S. W., Linn S. Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for recA/lexA functions. Proc Natl Acad Sci U S A. 1982 Jan;79(2):330–334. doi: 10.1073/pnas.79.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lytle C. D., Knott D. C. Enhanced mutagenesis parallels enhanced reactivation of herpes virus in a human cell line. EMBO J. 1982;1(6):701–703. doi: 10.1002/j.1460-2075.1982.tb01233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maher V. M., Dorney D. J., Mendrala A. L., Konze-Thomas B., McCormick J. J. DNA excision-repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation. Mutat Res. 1979 Sep;62(2):311–323. doi: 10.1016/0027-5107(79)90087-3. [DOI] [PubMed] [Google Scholar]
  17. McEntee K., Weinstock G. M. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6061–6065. doi: 10.1073/pnas.78.10.6061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mezzina M., Nocentini S., Sarasin A. DNA ligase activity in carcinogen-treated human fibroblasts. Biochimie. 1982 Aug-Sep;64(8-9):743–748. doi: 10.1016/s0300-9084(82)80122-3. [DOI] [PubMed] [Google Scholar]
  19. Miskin R., Ben-Ishai R. Induction of plasminogen activator by UV light in normal and xeroderma pigmentosum fibroblasts. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6236–6240. doi: 10.1073/pnas.78.10.6236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Netrawali M. S., Cerutti P. A. Increased near-ultraviolet induced DNA fragmentation in xeroderma pigmentosum variants. Biochem Biophys Res Commun. 1979 Apr 13;87(3):802–810. doi: 10.1016/0006-291x(79)92029-1. [DOI] [PubMed] [Google Scholar]
  21. Painter R. B. Response of Chinese hamster ovary cells to DNA damage after a conditioning exposure to ultraviolet light. Biochim Biophys Acta. 1980 Sep 19;609(2):257–263. doi: 10.1016/0005-2787(80)90236-1. [DOI] [PubMed] [Google Scholar]
  22. Rahmsdorf H. J., Mallick U., Ponta H., Herrlich P. A B-lymphocyte-specific high-turnover protein: constitutive expression in resting B cells and induction of synthesis in proliferating cells. Cell. 1982 Jun;29(2):459–468. doi: 10.1016/0092-8674(82)90162-3. [DOI] [PubMed] [Google Scholar]
  23. Sarasin A., Benoit A. Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells. Mutat Res. 1980 Mar;70(1):71–81. doi: 10.1016/0027-5107(80)90059-7. [DOI] [PubMed] [Google Scholar]
  24. Simons J. W. Development of a liquid-holding technique for the study of DNA-repair in human diploid fibroblasts. Mutat Res. 1979 Feb;59(2):273–283. doi: 10.1016/0027-5107(79)90165-9. [DOI] [PubMed] [Google Scholar]
  25. Taylor W. D., Bockstahler L. E., Montes J., Babich M. A., Lytle C. D. Further evidence that ultraviolet radiation-enhanced reactivation of simian virus 40 in monkey kidney cells is not accompanied by mutagenesis. Mutat Res. 1982 Nov;105(5):291–298. doi: 10.1016/0165-7992(82)90095-1. [DOI] [PubMed] [Google Scholar]
  26. Tyrrell R. M. Mutation induction and mutation suppression by natural sunlight. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1406–1414. doi: 10.1016/0006-291x(79)91223-3. [DOI] [PubMed] [Google Scholar]
  27. Tyrrell R. M., Souza-Neto A. Lethal effects of natural solar ultraviolet radiation in repair proficient and repair deficient strains of Escherichia coli: actions and interactions. Photochem Photobiol. 1981 Sep;34(3):331–337. [PubMed] [Google Scholar]
  28. Witkin E. M. From Gainesville to Toulouse: the evolution of a model. Biochimie. 1982 Aug-Sep;64(8-9):549–555. doi: 10.1016/s0300-9084(82)80086-2. [DOI] [PubMed] [Google Scholar]
  29. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES