Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2000 Jan;32(1):31–43. doi: 10.1023/A:1008143716374

The inhibitory effect of glutamate on the growth of a murine hybridoma is caused by competitive inhibition of the x-C transport system required for cystine utilization

ER Broadhurst 1, M Butler 2,
PMCID: PMC3449442  PMID: 19002965

Abstract

Glutamic acid was found to be growth inhibitory to a murinelymphocyte hybridoma in a concentration-dependent manner from 3to 12 mM glutamate. At 12 mM glutamate there was a 70% decreasein the specific growth rate of the cells. Attempts to alleviateinhibition or adapt cells to growth in glutamate-based mediawere unsuccessful. It is proposed that elevated glutamate levelsimpair adequate uptake of cystine, a critical amino acid for thesynthesis of glutathione. Glutathione is required by cells toprevent intracellular oxidative stress. The measured rate ofuptake of U-14C L-cystine into the cells was found to havethe following parameters: Km = 0.87 mM, Vmax = 0.9nmole/mg cell protein per min. The uptake was sodiumindependent and resembled the previously described x-ctransport system, with elevated glutamate levels causingextensive inhibition. Glutamate at a concentration of 1.4 mMcaused a 50% decrease in cystine uptake from the serum-freegrowth medium. Glutamate was taken up from the external medium(Km = 20 mM and Vmax = 12.5 nmole/mg cell protein permin) by the same transport system in a stereo specific, sodiumindependent manner. Of the amino acids examined, it was foundthat cystine and homocysteic acid were the most extensiveinhibitors of glutamate uptake and that inhibition was competitive. Metabolic profiles of the cells grown in culturescontaining enhanced glutamate levels revealed an overallincrease in net production of alanine, serine, asparagine andaspartate. A substantially increased specific consumption ofglutamate was accompanied by a decreased consumption of cystine,valine and phenylalanine.The combined kinetic and metabolic results indicate thatglutamate and cystine are taken up by the anionic transportsystem x-c. The increasing levels of glutamate in themedium result in a decreased transport of cystine by this systemdue to competitive inhibition by glutamate.

Keywords: hybridoma, glutamate, cystine, transport

Full Text

The Full Text of this article is available as a PDF (164.7 KB).

References

  1. Ash JF, Igo RP, Jr, Morgan M, Grey A. Selection of Chinese Hamster Ovary cells (CHO-K1) with reduced glutamate and aspartate uptake. Som Cell Mol Gen. 1993;19:231–243. doi: 10.1007/BF01233071. [DOI] [PubMed] [Google Scholar]
  2. Bannai S, Kitamura E. Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. J Biol Chem. 1981;256:5770–5772. [PubMed] [Google Scholar]
  3. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980;255:2372–2376. [PubMed] [Google Scholar]
  4. Bannai S, Tateishi N. Role of membrane transport in the metabolism and function of glutathione in mammals. J Membrane Biol. 1986;89:1–8. doi: 10.1007/BF01870891. [DOI] [PubMed] [Google Scholar]
  5. Bannai S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 1986;261:2256–2263. [PubMed] [Google Scholar]
  6. Bannai S. Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta. 1984;779:289–306. doi: 10.1016/0304-4157(84)90014-5. [DOI] [PubMed] [Google Scholar]
  7. Bannai S, Tsukeda H, Okumura H. Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochem Biophys Res Commun. 1977;74:1582–1588. doi: 10.1016/0006-291x(77)90623-4. [DOI] [PubMed] [Google Scholar]
  8. Bannai S, Ishii T. A novel function of glutamine in cell culture: Utilization of glutamine for the uptake of cystine in human fibroblasts. J Cell Physiol. 1988;137:360–366. doi: 10.1002/jcp.1041370221. [DOI] [PubMed] [Google Scholar]
  9. Bannai S. Transport of cystine and cysteine in mammalian cells. Biochem Biophys Acta. 1984;779:289–306. doi: 10.1016/0304-4157(84)90014-5. [DOI] [PubMed] [Google Scholar]
  10. Bannai S, Kitamura E. Adaptive enhancement of cystine and glutamate uptake in human diploid fibroblasts in culture. Biochim Biophys Acta. 1982;721:1–10. doi: 10.1016/0167-4889(82)90017-9. [DOI] [PubMed] [Google Scholar]
  11. Barnabé N, Butler M. Effect of temperature on nucleotide pools and monoclonal antibody production in a mouse hybridoma. Biotech Bioeng. 1994;44:1235–1245. doi: 10.1002/bit.260441011. [DOI] [PubMed] [Google Scholar]
  12. Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology. 1992;10:169–175. doi: 10.1038/nbt0292-169. [DOI] [PubMed] [Google Scholar]
  13. Birwe H, Hesse A. High-performance liquid chromatographic determination of urinary cysteine and cystine. Clin Chimica Acta. 1991;199:33–42. doi: 10.1016/0009-8981(91)90006-x. [DOI] [PubMed] [Google Scholar]
  14. Bray HG, James SP, Raffau IM, Thorpe WV. The enzymatic hydrolysis of glutamine and its spontaneous decomposition in buffer solutions. Biochem J. 1949;44:625–627. [PMC free article] [PubMed] [Google Scholar]
  15. Burger M, Hess MW, Cottier H. The role of 2-mercaptoethanol in the stimulation of spleen cell cultures: increased uptake of cystine into the TCA-soluble pool. Immunol Lett. 1982;4:193–197. doi: 10.1016/0165-2478(82)90013-x. [DOI] [PubMed] [Google Scholar]
  16. Butler M, Christie A. Adaptation of mammalian cells to non-ammoniagenic media. Cytotechnology. 1994;15:87–94. doi: 10.1007/BF00762382. [DOI] [PubMed] [Google Scholar]
  17. Butler M, Imamura T, Thomas J, Thilly WG. High yields from microcarrier cultures by medium perfusion. J Cell Sci. 1983;61:351–363. doi: 10.1242/jcs.61.1.351. [DOI] [PubMed] [Google Scholar]
  18. Butler M, Jenkins H. Nutritional aspects of growth of animal cells in culture. J Biotechnol. 1989;12:97–110. [Google Scholar]
  19. Butler M, Spier RE. The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier cultures. J Biotechol. 1984;1:187–196. [Google Scholar]
  20. Christensen HN, Kilberg MS. Amino acid transport across the plasma membrane: role of regulation in interorgan flow. In: Yudilevich DL, Boyd CAR, editors. Amino acid transport in Animal Cells. Manchester UK: Manchester University Press; 1987. pp. 10–46. [Google Scholar]
  21. Christie A, Butler M. Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase. J Biotechnol. 1994;37:277–290. doi: 10.1016/0168-1656(94)90134-1. [DOI] [PubMed] [Google Scholar]
  22. Christie A and Butler M (1999) The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotech Bioeng in press. [PubMed]
  23. Cotgreave LA, Schuppe-Koistinen I. A role for γ-glutamyl transpeptidase in the transport of cystine into human endothelial cells; relationship to intracellular glutathione. Biochim Biophys Acta. 1994;1222:375–382. doi: 10.1016/0167-4889(94)90043-4. [DOI] [PubMed] [Google Scholar]
  24. Dall'Asta V, Gazzola GC, Gazzola R, Bussolati O, Longo N, Guidotti GG. Pathways of L-glutamic acid transport in cultured human fibroblasts. J Biol Chem. 1983;258:6371–6379. [PubMed] [Google Scholar]
  25. Deneke SM. Induction of cystine transport in bovine pulmonary artery endothelial cells by sodium arsenite. Biochim Biophys Acta. 1992;1109:127–131. doi: 10.1016/0005-2736(92)90075-w. [DOI] [PubMed] [Google Scholar]
  26. Fedorcsak I, Harms-Ringdahl M, Ehrenberg L. Prevention of sulfhydryl autoxidation by a polypeptide from red kidney beans, described to be a stimulator of RNA synthesis. Exp Cell Res. 1977;108:331–339. doi: 10.1016/s0014-4827(77)80040-2. [DOI] [PubMed] [Google Scholar]
  27. Forster S, Lloyd JB. pH-profile of cystine and glutamate transport in normal and cystinotic human fibroblasts. Biochim Biophys Acta. 1985;814:398–400. doi: 10.1016/0005-2736(85)90461-4. [DOI] [PubMed] [Google Scholar]
  28. Glacken MW. Catabolic control of mammalian cell culture. Bio/Technology. 1988;6:1041–1049. [Google Scholar]
  29. Hassell T, Butler M. Adaptation to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J Cell Sci. 1990;96:501–508. doi: 10.1242/jcs.96.3.501. [DOI] [PubMed] [Google Scholar]
  30. Ishii T, Hishinuma I, Bannai S, Sugita Y. Mechanism of growth promotion of mouse lymphoma L 1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol. 1981;107:283–293. doi: 10.1002/jcp.1041070215. [DOI] [PubMed] [Google Scholar]
  31. Jones BN, Gilligan JP. o-Phthaldialdehyde pre-column derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolyzates and physiological fluids. J Chromatogr. 1983;266:471–482. doi: 10.1016/s0021-9673(01)90918-5. [DOI] [PubMed] [Google Scholar]
  32. Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H. Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Cell Dev Biol. 1989;25:442–448. doi: 10.1007/BF02624629. [DOI] [PubMed] [Google Scholar]
  33. Ljunggren J, Haggstrom L. Glutamine limited fed-batch culture reduces ammonium ion production in animal cells. Biotechnol Lett. 1990;12:705–710. [Google Scholar]
  34. Makowske M, Christensen HN. Contrasts in transport systems for anionic amino acids in hepatocytes and a hepatoma cell line HTC. J Biol Chem. 1982;257:5663–5670. [PubMed] [Google Scholar]
  35. McDermott RH, Butler M. Uptake of glutamate, not glutamine synthetase, regulates adaptation of mammalian cells to glutamine-free medium. J Cell Sci. 1993;104:51–58. doi: 10.1242/jcs.104.1.51. [DOI] [PubMed] [Google Scholar]
  36. Meredith MJ, Williams GM. Intracellular Glutathione cycling by γ-glutamyl transpeptidase in tumorigenic and non-tumorigenic cultured rat liver cells. J Biol Chem. 1986;261:4986–4992. [PubMed] [Google Scholar]
  37. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989;2:1547–1558. doi: 10.1016/0896-6273(89)90043-3. [DOI] [PubMed] [Google Scholar]
  38. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes: II. A major role of the mixed disulfide between 2-mercaptoethanol and cysteine. Cell Immunol. 1983;79:173–185. doi: 10.1016/0008-8749(83)90060-6. [DOI] [PubMed] [Google Scholar]
  39. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes: III. Serum-bound and oxidized 2-mercaptoethanol are available for the augmentation. Cell Immunol. 1983;79:186–196. doi: 10.1016/0008-8749(83)90061-8. [DOI] [PubMed] [Google Scholar]
  40. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J Exp Med. 1982;155:1277–1290. doi: 10.1084/jem.155.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Patterson MK., Jr Measurement of growth and viability of cells in culture. Methods Enzymol. 1979;58:141–152. doi: 10.1016/s0076-6879(79)58132-4. [DOI] [PubMed] [Google Scholar]
  42. Petch D, Butler M. A profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization. J Cell Physiol. 1994;161:71–76. doi: 10.1002/jcp.1041610110. [DOI] [PubMed] [Google Scholar]
  43. Petch D, Butler M. The effect of alternative carbohydrates on the growth and antibody production of a murine hybridoma. Appl Biochem Biotech. 1996;59:93–104. doi: 10.1007/BF02787861. [DOI] [PubMed] [Google Scholar]
  44. Ratan RR, Murphy TH, Baraban IM. Macromolecular synthesis inhibitors prevent oxidative stress induced apoptosis in embryonic corticol neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci. 1994;14:4385–4392. doi: 10.1523/JNEUROSCI.14-07-04385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Reynolds RA, Mahoney SG, McNamara PD, Segal S. The influence of pH on cystine and dibasic amino acid transport by rat renal brush border membrane vesicles. Biochim Biophys Acta. 1991;1074:56–61. doi: 10.1016/0304-4165(91)90039-j. [DOI] [PubMed] [Google Scholar]
  46. Rosenberg LE, Downing S. Transport of neutral and dibasic amino acids by human leukocytes. J Clin Invest. 1965;44:1382–1393. doi: 10.1172/JCI105243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sano K. Solubility of amino acids under the influence of different pH. Biochem Z. 1926;168:14–33. [Google Scholar]
  48. Sato H, Takenaka Y, Fujiwana K, Yamaguchi M, Abe K, Bannai S. Increase in cystine transport activity and glutathione level in mouse peritoneal macrophages exposed to oxidized low density lipoprotein. Biochem Biophys Res Comm. 1995;215:154–159. doi: 10.1006/bbrc.1995.2446. [DOI] [PubMed] [Google Scholar]
  49. Schroer JA, Bender T, Feldman RJ, Kim KJ. Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur J Immunol. 1983;13:693–700. doi: 10.1002/eji.1830130902. [DOI] [PubMed] [Google Scholar]
  50. Tritsch GL, Moore GE. Spontaneous decomposition of glutamine in cell culture media. Exp Cell Res. 1962;28:360–364. doi: 10.1016/0014-4827(62)90290-2. [DOI] [PubMed] [Google Scholar]
  51. van Winkle LJ, Mann DF, Wasserlauf HG, Patel M. Mediated Na+-independent transport of L-glutamate and L-cystine in 1-and 2-cell mouse conceptuses. Biochim Biophys Acta. 1992;1107:299–304. doi: 10.1016/0005-2736(92)90416-j. [DOI] [PubMed] [Google Scholar]
  52. Wice BM, Reitzer LJ, Kennell D. The continuous growth of vertebrate cells in the absence of sugar. J Biol Chem. 1981;256:7812–7819. [PubMed] [Google Scholar]
  53. Zielke HR, Zielke CL, Ozand PT. Glutamine: a major energy source for cultured mammalian cells. Fed Proc. 1984;43:121–125. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES