Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Sep;42(3):121–131. doi: 10.1023/B:CYTO.0000015833.34696.03

Development of a standardized protocol for reproducible generation of matured monocyte-derived dendritic cells suitable for clinical application

HR Bohnenkamp 1, T Noll 1,
PMCID: PMC3449451  PMID: 19002934

Abstract

There is increasing interest in the generation of dendritic cells (DC) for cancer immunotherapy. In order to utilize DC in clinical trials it is necessary to have standardized, reproducible and easy to use protocols. We describe here the process development for the generation of DC as the result of investigation of culture conditions as well as consumption rates of medium and cytokines. Our studies demonstrate that highly viable DC (93 ± 2%) can be produced from CD14+ enriched monocytes via immunomagnetic beads in a high yield (31 ± 6%) with X-VIVO 15, 400 U ml−1 GM-CSF and 2000 U ml−1 IL-4 without serum and feeding. For the maturation of DC different cocktails (TNF-α, IL-1β, IL-6, PGE2 and TNF-α, PGE2) were compared. In both cases cells expressed typical surface molecules of mature DC and induced high proliferative responses in mixed lymphocyte reactions which led to IFN-γ producing T-lymphocytes. The data suggest that the use of this optimized, easy to use protocol results in highly mature DC.

Keywords: Dendritic cells, Immunotherapy, Monocyte enrichment, Serum-free

Full Text

The Full Text of this article is available as a PDF (635.9 KB).

References

  1. Banchereau J., Steinman R.M. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. [DOI] [PubMed] [Google Scholar]
  2. Bender A., Sapp M., Schuler G., Steinman R.M., Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Meth. 1996;196:121–135. doi: 10.1016/0022-1759(96)00079-8. [DOI] [PubMed] [Google Scholar]
  3. Berger T., Feuerstein B., Strasser E., Hirsch U., Schreiner D., Schuler G., Schuler-Thurner B. Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J. Immunol. Meth. 2002;268:131–140. doi: 10.1016/S0022-1759(02)00189-8. [DOI] [PubMed] [Google Scholar]
  4. Bernard J., Ittelet D., Christoph A., Potron G., Adjizian J.C., Kochman S., Lopez M. Adherent-free generation of functional dendritic cells from purified blood monocytes in view of potential clinical use. Hematol. Cell Ther. 1998;40:17–26. [PubMed] [Google Scholar]
  5. Bohnenkamp H.R., Noll T. Bioprocess development for the cultivation of human T-lymphocytes in a clinical scale. Cytotechnology. 2002;38:135–145. doi: 10.1023/A:1021174619613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caux C., Dezutter-Dambuyant C., Schmitt D., Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360:258–261. doi: 10.1038/360258a0. [DOI] [PubMed] [Google Scholar]
  7. Costello R.T., Gastaut J.A., Olive D. Tumor escape from immune surveillance. Arch. Immunol. Ther. Exp. 1999;47:83–88. [PubMed] [Google Scholar]
  8. Dhodapkar M.V., Steinman R.M., Krasovsky J., Munz C., Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 2001;193:233–238. doi: 10.1084/jem.193.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietz A.B., Bulur P.A., Erickson M.R., Wettstein P.J., Litzow M.R., Wyatt W.A., Dewald G.W., Tefferi A., Pankratz V.S., Vuk-Pavlovic S. Optimizing preparation of normal dendritic cells and bcr-abl+ mature dendritic cells derived from immunomagnetically purified CD14+ cells. J. Hematother. Stem Cell Res. 2000;9:95–101. doi: 10.1089/152581600319676. [DOI] [PubMed] [Google Scholar]
  10. Dzionek A., Piechaczek C., Campbell J., Zysk M., Winkels G., Huppert V. and Schmitz J. 2002. Clinical-scale magnetic sorting and multiparamter analysis of dendritic cells aubsets and precursors. In: 7th International Symposium on Dendritic Cells, Bamberg.
  11. Fong L., Hou Y., Rivas A., Benike C., Yuen A., Fisher G.A., Davis M.M., Engleman E.G. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. USA. 2001;98:8809–8814. doi: 10.1073/pnas.141226398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goxe B., Latour N., Chokri M., Abastado J.P., Salcedo M. Simplified method to generate large quantities of dendritic cells suitable for clinical applications. Immunol. Invest. 2000;29:319–336. doi: 10.3109/08820130009060870. [DOI] [PubMed] [Google Scholar]
  13. Guyre C.A., Fisher J.L., Waugh M.G., Wallace P.K., Tretter C.G., Ernstoff M.S., Barth R.J. Advantages of hydrophobic culture bags over flasks for the generation of monocyte-derived dendritic cells for clinical applications. J. Immunol. Meth. 2002;262:85–94. doi: 10.1016/S0022-1759(02)00015-7. [DOI] [PubMed] [Google Scholar]
  14. Jonuleit H., Kuhn U., Muller G., Steinbrink K., Paragnik L., Schmitt E., Knop J., Enk A.H. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serumfree conditions. Eur. J. Immunol. 1997;27:3135–3142. doi: 10.1002/eji.1830271209. [DOI] [PubMed] [Google Scholar]
  15. Kalinski P., Schuitemaker J.H., Hilkens C.M., Kapsenberg M.L. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: The levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J. Immunol. 1998;161:2804–2809. [PubMed] [Google Scholar]
  16. Kikuchi T., Akasaki Y., Irie M., Homma S., Abe T., Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 2001;50:337–344. doi: 10.1007/s002620100205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kobayashi T., Shinohara H., Toyoda M., Iwamoto S., Tanigawa N. Regression of lymph node metastases by immunotherapy using autologous breast tumor-lysate pulsed dendritic cells: Report of a case. Surg. Today. 2001;31:513–516. doi: 10.1007/s005950170112. [DOI] [PubMed] [Google Scholar]
  18. Kugler A., Stuhler G., Walden P., Zoller G., Zobywalski A., Brossart P., Trefzer U., Ullrich S., Muller C.A., Becker V., Gross A.J., Hemmerlein B., Kanz L., Muller G.A., Ringert R.H. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 2000;6:332–336. doi: 10.1038/73193. [DOI] [PubMed] [Google Scholar]
  19. Luft T., Jefford M., Luetjens P., Toy T., Hochrein H., Masterman K.A., Maliszewski C., Shortman K., Cebon J., Maraskovski E. Functionally distinct dendritic cell DC populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC Subsets. Blood. 2002;100:1362–1372. doi: 10.1182/blood-2001-12-0360. [DOI] [PubMed] [Google Scholar]
  20. Mackensen A., Herbst B., Chen J.L., Kohler G., Noppen C., Herr W., Spagnoli G.C., Cerundolo V., Lindemann A. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer. 2000;86:385–392. doi: 10.1002/(SICI)1097-0215(20000501)86:3<385::AID-IJC13>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  21. Manz R., Assenmacher M., Pfluger E., Miltenyi S., Radbruch A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA. 1995;92:1921–1925. doi: 10.1073/pnas.92.6.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nestle F.O., Alijagic S., Gilliet M., Sun Y., Grabbe S., Dummer R., Burg G., Schadendorf D. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat. Med. 1998;4:328–332. doi: 10.1038/nm0398-328. [DOI] [PubMed] [Google Scholar]
  23. O'Garra A., Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 2000;10:542–550. doi: 10.1016/S0962-8924(00)01856-0. [DOI] [PubMed] [Google Scholar]
  24. Patel S.D., Papoutsakis E.T., Winter J.N., Miller W.M. The lactate issue revisited: Novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Biotechnol. Prog. 2000;16:885–892. doi: 10.1021/bp000080a. [DOI] [PubMed] [Google Scholar]
  25. Pickl W.F., Majdic O., Kohl P., Stockl J., Riedl E., ScheineckerC C., Bello-Fernandez C., Knapp W. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J. Immunol. 1996;157:3850–3859. [PubMed] [Google Scholar]
  26. Romani N., Gruner S., Brang D., Kampgen E., Lenz A., Trockenbacher B., Konwalinka G., Fritsch P.O., Steinman R.M., Schuler G. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 1994;180:83–93. doi: 10.1084/jem.180.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romani N., Reider D., Heuer M., Ebner S., Kampgen E., Eibl B., Niederwieser D., Schuler G. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Meth. 1996;196:137–151. doi: 10.1016/0022-1759(96)00078-6. [DOI] [PubMed] [Google Scholar]
  28. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994;179:1109–1118. doi: 10.1084/jem.179.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sallusto F., Lanzavecchia A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J. Exp. Med. 1999;189:611–614. doi: 10.1084/jem.189.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scandella E., Men Y., Gillessen S., Forster R., Groetrp M. Prostaglandin E2 is a key factor for CCR7 surface expression and migartion of monocyte-derived dendritic cells. Blood. 2002;100:1354–1361. doi: 10.1182/blood-2001-11-0017. [DOI] [PubMed] [Google Scholar]
  31. Schuler-Thurner B., Schultz E.S., Berger T.G., Weinlich G., Ebner S., Woerl P., Bender A., Feuerstein B., Fritsch P.O., Romani N., Schuler G. Rapid induction of tumorspecific type 1 helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptideloaded monocyte-derived dendritic cells. J. Exp. Med. 2002;195:1279–1288. doi: 10.1084/jem.20012100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thurner B., Haendle I., Roder C., Dieckmann D., Keikavoussi P., Jonuleit H., Bender A., Maczek C., Schreiner D., von den Driesch P., Brocker E.B., Steinman R.M., Enk A., Kampgen E., Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 1999;190:1669–1678. doi: 10.1084/jem.190.11.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thurner B., Roder C., Dieckmann D., Heuer M., Kruse M., Glaser A., Keikavoussi P., Kampgen E., Bender A., Schuler G. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J. Immunol. Meth. 1999;223:1–15. doi: 10.1016/S0022-1759(98)00208-7. [DOI] [PubMed] [Google Scholar]
  34. Zhou L.J., Tedder T.F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 1995;154:3821–3835. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES