Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 Jan;29(1):55–64. doi: 10.1023/A:1008080432681

Na-butyrate increases the production and α2,6-sialylation of recombinant interferon-γ expressed by α2,6- sialyltransferase engineered CHO cells

Damien Lamotte 1, Lorraine Buckberry 2, Lucia Monaco 3, Marco Soria 3, Nigel Jenkins 2, Jean-Marc Engasser 1, Annie Marc 1
PMCID: PMC3449462  PMID: 19003337

Abstract

A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- γ (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme α2,6-sialyltransferase (α2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by α2,6-engineered cells contained 68% of the total sialic acids in the α2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the α2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the α2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.

Keywords: α2,6-sialyltransferase; CHO cells; interferon-γ; sialylation; sodium butyrate

Full Text

The Full Text of this article is available as a PDF (105.4 KB).

References

  1. Arts J, Lansink M, Grimbergen J, Toet KH, Kooistar T. Stimulation of tissue-type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothetial cells involves histone acetylation. Biochem J. 1995;310:171–176. doi: 10.1042/bj3100171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chevalot I, Dardenne M, Cherlet M, Engasser J-M, Marc A. Effect of sodium butyrate on protein production in different culture systems. In: Beuvery EC, Spier R, Griffiths B, editors. Animal Cell Technology: Developments towards the 21st Century. Dordrecht: Kluwer Academic Publishers; 1995. pp. 143–147. [Google Scholar]
  3. Chevalot I, Visvikis A, Nabet P, Engasser J-M, Marc A. Production of a membrane-bound protein, the human gammaglutamyl transferase, by CHO cells cultivated on microcarriers, in aggregates and in suspension. Cytotechnology. 1994;16:121–129. doi: 10.1007/BF00754614. [DOI] [PubMed] [Google Scholar]
  4. Chotigeat W, Watanapokasin Y, Malher S, Gray PP. Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology. 1994;15:217–221. doi: 10.1007/BF00762396. [DOI] [PubMed] [Google Scholar]
  5. Cole ES, Nichols EH, Poisson L, Harnois ML, Livingston DJ. In vivo clearance of tissue plasminogen-activator — The complex role of sites and level of sialylation. Fibrinolysis. 1993;7:15–27. [Google Scholar]
  6. Dorner AJ, Wasley LC, Kaufman RJ. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated chinese hamster ovary cells. J Biol Chem. 1989;264:20602–20607. [PubMed] [Google Scholar]
  7. Dickramer K. Clearing up glycoprotein hormones. Cell. 1991;67:1029–1032. doi: 10.1016/0092-8674(91)90278-7. [DOI] [PubMed] [Google Scholar]
  8. Fillipovitch I, Sorokina N, Khanna KK, Lavin MF. Butyrate induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA. Biochem Biophys Res Comm. 1994;198:257–265. doi: 10.1006/bbrc.1994.1036. [DOI] [PubMed] [Google Scholar]
  9. Flesher ER, Marzowski J, Wang WC, Raff HV. Fluorophore labelled glycan analysis of immunoglobulin fusion proteins: correlation of oligosaccharide content with in vivo clearance profile. Biotechnol Bioeng. 1995;46:399–407. doi: 10.1002/bit.260460502. [DOI] [PubMed] [Google Scholar]
  10. Gebert CA, Gray PP. Expression of FSH in CHO cells. 2. Stimulation of hFSH expression levels by defined medium supplements. Cytotechnology. 1995;17:13–19. doi: 10.1007/BF00749216. [DOI] [PubMed] [Google Scholar]
  11. Goergen J-L, Marc A, Engasser J-M, Rabaud J-N, Pierry G, Geaugey V, Geahel I, Hache J. Development of a new membrane reactor for large scale mammalian cell culture. In: Spier RE, Griffiths JB, Berthold W, editors. Animal Cell Technology: Products of Today, Prospects for Tomorrow. London: Butterworth-Heinemann; 1994. pp. 287–290. [Google Scholar]
  12. Grabenhorst E, Hoffman A, Nimtz M, Zettlmeissl G, Conradt HS. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(β1-4)GlcNAc-R α2,6-sialyltransferase. Eur J Biochem. 1995;232:718–725. doi: 10.1111/j.1432-1033.1995.718zz.x. [DOI] [PubMed] [Google Scholar]
  13. Gramer M, Goochee C, Chock V, Brousseau D, Sliwkowski M. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/technology. 1995;13:692–698. doi: 10.1038/nbt0795-692. [DOI] [PubMed] [Google Scholar]
  14. Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL, Levinson AD, Goeddel DV. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature. 1982;295:503–508. doi: 10.1038/295503a0. [DOI] [PubMed] [Google Scholar]
  15. Gu X, Harmon BJ, Wang DIC. Site-and branch-specific sialylation of recombinant human interferon-g in Chinese hamster ovary cell culture. Biotechnol Bioeng. 1997;55:390–398. doi: 10.1002/(SICI)1097-0290(19970720)55:2<390::AID-BIT16>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  16. Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Bull AT. Chinese hamster ovary cell growth and interferon production kinetics in stirred batch culture. Appl Microb Biotechnol. 1991;34:559–564. doi: 10.1007/BF00167898. [DOI] [PubMed] [Google Scholar]
  17. Hodgson J. Expression systems: A user's guide. Bio/technology. 1993;11:887–893. doi: 10.1038/nbt0893-887. [DOI] [PubMed] [Google Scholar]
  18. Hooker AD, Green NH, James DC, Strange PG, Baines AJ, Bull AT, Jenkins N. Epitope determination for antibodies raised against recombinant human interferon-γ. In: Carrondo MJT, Griffiths B, Moreira JLP, editors. Animal Cell Technology: From Vaccines to Genetic Medicine. Dordrecht: Kluwer Academic Publishers; 1997. pp. 277–282. [Google Scholar]
  19. Hooker AD, Goldman MH, Markham NH, James DC, Ison AP, Bull AT, Strange PG, Salmon I, Baines AJ, Jenkins N. N-glycans of recombinant human interferon-γ change during batch culture of Chinese-hamster ovary cells. Biotechnol Bioeng. 1995;48:639–648. doi: 10.1002/bit.260480612. [DOI] [PubMed] [Google Scholar]
  20. James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N. N-glycosylation of recombinant human interferon-γ produced in different animal expression systems. Bio/technology. 1995;13:592–596. doi: 10.1038/nbt0695-592. [DOI] [PubMed] [Google Scholar]
  21. Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nature Biotechnology. 1996;14:975–981. doi: 10.1038/nbt0896-975. [DOI] [PubMed] [Google Scholar]
  22. Jenkins N, Castro PML, Menon S, Ison A, Bull AT. Effect of lipid supplements on the production and glycosylation of recombinant interferon-γ expressed in CHO cells. Cytotechnology. 1994;15:209–215. doi: 10.1007/BF00762395. [DOI] [PubMed] [Google Scholar]
  23. Kelm S, Schauer R, Manuguerra JC, Gross HJ, Crocker PR. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate J. 1995;11:576–585. doi: 10.1007/BF00731309. [DOI] [PubMed] [Google Scholar]
  24. Kruh J. Effects of sodium butyrate, a new pharmaceutical agent, on cells in culture. Mol Cell Biochem. 1982;42:65–82. doi: 10.1007/BF00222695. [DOI] [PubMed] [Google Scholar]
  25. Lamotte D, Eon-Duval A, Acerbis G, Distefano G, Monaco L, Soria M, Jenkins N, Engasser J-M, Marc A. Controlling the glycosylation of recombinant proteins expressed in animal cells by genetic and physiological engineering. In: Carrondo MJT, Griffiths B, Moreira JLP, editors. Animal Cell Technology: From Vaccines to Genetic Medicine. Dordrecht: Kluwer Academic Publishers; 1997. pp. 761–765. [Google Scholar]
  26. Lao MS, Toth D, Danell G, Schalla C. Degradative activities in a recombinant Chinese hamster ovary cell culture. Cytotechnology. 1996;22:43–52. doi: 10.1007/BF00353923. [DOI] [PubMed] [Google Scholar]
  27. Lee UE, Roth J, Paulson JC. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of β-galactoside α2,6-sialyltransferase. J Biol Chem. 1989;164:13848–13855. [PubMed] [Google Scholar]
  28. Li M, Andersen ML, Lance P. Expression and regulation of glycosyltransferases for N-glycosyl oligosaccharides in fresh human surgical and murine tissues and cultured cell lines. Clin Sci. 1995;89:397–404. doi: 10.1042/cs0890397. [DOI] [PubMed] [Google Scholar]
  29. Lodish HF. Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem Sci. 1991;16:374–377. doi: 10.1016/0968-0004(91)90154-n. [DOI] [PubMed] [Google Scholar]
  30. Lourenço da Silva A, Marc A, Engasser J-M, Goergen J-L. Kinetic model of hybridoma cultures for the identification of rate limiting factors and process optimisation. Math Comp Sim. 1996;42:197–205. [Google Scholar]
  31. Meager A, Leist T. Antigenic characteristics of glycosylated natural and unglycosylated recombinant human gammainterferon. J Interferon Res. 1986;6:225–232. doi: 10.1089/jir.1986.6.225. [DOI] [PubMed] [Google Scholar]
  32. Monaco L, Marc A, Eon-Duval A, Acerbis G, Distefano G, Lamotte D, Engasser J-M, Soria M, Jenkins N. Genetic engineering of α2,6-sialyltransferase in recombinant CHO cells and its effect on the sialylation of recombinant interferon-γ. Cytotechnology. 1996;22:197–203. doi: 10.1007/BF00353939. [DOI] [PubMed] [Google Scholar]
  33. Monaco L, Tagliabue R, Soria MR, Uhlèn M. An in vitro approach for the expression of recombinant proteins in mammalian cells. Biotechnol Appl Biochem. 1994;20:157–171. [PubMed] [Google Scholar]
  34. Munzert E, Müthing J, Büntemeyer H, Lehman J. Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol Prog. 1996;12:559–563. doi: 10.1021/bp9600086. [DOI] [PubMed] [Google Scholar]
  35. Oh SKW, Vig P, Chua F, Teo WK, Yap MGS. Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol Bioeng. 1993;42:601–610. doi: 10.1002/bit.260420508. [DOI] [PubMed] [Google Scholar]
  36. Oster T, Thioudellet C, Chevalot I, Masson C, Wellman M, Marc A, Siest G. Induction of recombinant gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO chinese hamster cells. Biochem Biophys Res Comm. 1993;193:406–412. doi: 10.1006/bbrc.1993.1638. [DOI] [PubMed] [Google Scholar]
  37. Palermo DP, DeGraaf ME, Marotti KR, Rehberg E, Post LE. Production of analytical quantities of recombinant proteins in chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol. 1991;19:35–48. doi: 10.1016/0168-1656(91)90073-5. [DOI] [PubMed] [Google Scholar]
  38. Reuter G, Schauer R. Determination of sialic acids. Methods Enzymol. 1994;230:168–199. doi: 10.1016/0076-6879(94)30012-7. [DOI] [PubMed] [Google Scholar]
  39. Rinderknecht E, O'Connor BH, Rodriguez H. Natural human interferon-γ. Complete amino sequence and determination of sites of glycosylation. J Biol Chem. 1984;259:6790–6797. [PubMed] [Google Scholar]
  40. Rocchi P, Ferreri AM, Simone G, Granchi D, Paolucci P, Paolucci G. Growth inhibitory and differentiating effects of sodium butyrate on human neuroblastoma cells in culture. Anticancer Res. 1992;12:917–920. [PubMed] [Google Scholar]
  41. Saito H, Kagawa T, Tada S, Tsunematsu S, Guevara FM, Watanabe T, Morizane T, Tsuchiya M. Effect of dexamethasone, dimethylsulfoxide and sodium butyrate on a human hepatoma cell line PLC/PRF/5. Cancer Biochem Biophys. 1992;13:75–84. [PubMed] [Google Scholar]
  42. Sareneva T, Pirhonen J, Cantell K, Julkunen I. N-glycosylation of human interferon-γ: glycans at Asn-25 are critical for protease resistance. Biochem J. 1995;308:9–14. doi: 10.1042/bj3080009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sareneva T, Pirhonen J, Cantell K, Kalkkinen N, Julkunen I. Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-γ. Biochem J. 1994;303:831–840. doi: 10.1042/bj3030831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sareneva T, Cantell K, Pyhäla L, Pirhonen J, Julkunen I. Effect of carbohydrates on the pharmacokinetics of human interferon-γ. J Interferon Res. 1993;13:267–269. doi: 10.1089/jir.1993.13.267. [DOI] [PubMed] [Google Scholar]
  45. Shadan FF, Cowsert LM, Villarbeal LP. n-Butyrate, a cell cycler blocker, inhibits the replication of polyomaviruses and papillomaviruses but not that of adenoviruses and herpesvirus. J Virol. 1994;68:4785–4796. doi: 10.1128/jvi.68.8.4785-4796.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shah S, Lance P, Smith TJ, Berenson CS, Cohen SA, Horvath PJ, Lau JTY, Baumann H. n-butyrate reduces the expression of β-galactoside α2,6-sialyltransferase in Hep G2 cells. J Biol Chem. 1995;267:10652–10658. [PubMed] [Google Scholar]
  47. Smith TJ, Piscatelli JJ, Andersen V, Wang H-S, Lance P. n-butyrate induces plasminogen activator inhibitor type 1 messenger RNA in cultured Hep G2 cells. Hepatology. 1996;23:866–871. doi: 10.1002/hep.510230430. [DOI] [PubMed] [Google Scholar]
  48. Smith PJ. n-butyrate alters chromatin accessibility to DNA repair enzymes. Carcinogenesis. 1986;7:423–429. doi: 10.1093/carcin/7.3.423. [DOI] [PubMed] [Google Scholar]
  49. Wagner A, Marc A, Engasser J-M. The use of lactate dehydrogenase (LDH) release kinetics for the evaluation of death and growth of mammalian cells in perfusion reactors. Biotechnol Bioeng. 1992;39:320–326. doi: 10.1002/bit.260390310. [DOI] [PubMed] [Google Scholar]
  50. Yamada K, Ohtsu M, Sugano M, Kimura G. Effects of butyrate on cell cycle progression and polyploidization of various types of mammalian cells. Biosci Biotech Biochem. 1992;56:1261–1265. doi: 10.1271/bbb.56.1261. [DOI] [PubMed] [Google Scholar]
  51. Yamamoto I, Matsunaga T, Sakata K, Nakamura Y, Doi S, Hanmyou F. Histone hyperacetylation plays a role in augmentation of IL-4-induced IgE production in LPS-stimulated murine B-lymphocytes by sodium butyrate. J Biochem. 1996;119:1056–1061. doi: 10.1093/oxfordjournals.jbchem.a021347. [DOI] [PubMed] [Google Scholar]
  52. Young HA, Hardy KJ. Role of interferon-γ in immune cell regulation. J Leuk Biol. 1995;58:373–381. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES