Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Jun 16;46(1):25–36. doi: 10.1007/s10616-005-1477-4

Differential effect of green tea catechins on three endothelial cell clones isolated from rat adipose tissue and on human umbilical vein endothelial cells

A Tansu Koparal 1,2, Hirotake Yamaguchi 3, Kaoru Omae 3, Shuhei Torii 4, Yasuo Kitagawa 1,3,
PMCID: PMC3449474  PMID: 19003256

Abstract

By single colony isolation from the cells in stromal vascular fraction (SVF) dispersed from rat adipose tissues, we isolated three independent clones with different proliferation potential. All clones showed cobblestone-like morphology at the confluence and incorporated fluorescent Dil acetylated low density lipoprotein. When plated on Matrigel, they formed a capillary network-like structure. These rat adipose tissue endothelial cell (RATEC) clones showed higher expression of wnt2, wnt4, wnt5a, wnt5b, fzd1 and fzd5 whereas lower expression of cell cycle controlling genes such as CIP1, KIP1, KIP2, CDKN2A, CDKN2B, CDKN2C and CDKN2D compared to human umbilical vein endothelial cell (HUVEC). As reported for HUVEC, the growth of RATEC was inhibited by green tea catechins such as epigallocatechin, epicatechin gallate, epicatechin and epigallocatechin gallate but with higher sensitivity than HUVEC. The sensitivity of RATEC to catechins was higher for the cultures with low plating density and for the clone with higher proliferation potential.

Keywords: Adipose tissue, Angiogenesis, Catechin, Endothelial cells, Obesity, Tea

Full Text

The Full Text of this article is available as a PDF (707.6 KB).

Glossary

DMEM

Dulbecco’s modified Eagle’s medium

FBS

Fetal bovine serum

HUVEC

human umbilical vein endothelial cell

PCR

Polymerase chain reaction

RATEC

Rat adipose tissue endothelial cell

RT-PCR

Reverse transcription PCR

SVF

Stromal vascular fraction

TIMP

Tissue inhibitor of metalloproteinase

VEGF

Vascular endothelial growth factor

References

  1. Abou-Agag L.H., Aikens M.L., Tabengwa E.M., Benza R.L., Shows S.R., Grenett H.E., Booyse F.M. Polyphenolics increase t-PA and u-PA gene transcription in cultured human endothelial cells. Alcohol Clin. Exp. Res. 2001;25:155–162. doi: 10.1097/00000374-200102000-00001. [DOI] [PubMed] [Google Scholar]
  2. Ashjian P.H., Elbarbary A.S., Edmonds B., De Ugarte D., Zhu M., Zuk P.A., Lorenz H.P., Benhaim P., Hedrick M.H. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003;111:1922–1931. doi: 10.1097/01.PRS.0000055043.62589.05. [DOI] [PubMed] [Google Scholar]
  3. Bouloumie A., Drexler H.C., Lafontan M., Busse R. Leptin, the product of Ob genepromotes angiogenesis. Circ. Res. 1998;83:1059–1066. doi: 10.1161/01.res.83.10.1059. [DOI] [PubMed] [Google Scholar]
  4. Bouloumie A., Lolmede K., Sengenes C., Galitzky J., Lafontan M. Angiogenesis in adipose tissue. Ann. Endocrinol. 2002;63:91–95. [PubMed] [Google Scholar]
  5. Cao Y., Cao R. Angiogenesis inhibited by drinking tea. Nature. 1999;398:381. doi: 10.1038/18793. [DOI] [PubMed] [Google Scholar]
  6. Castellot J.J., Jr., Karnovsky M.J., Spiegelman B.M. Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proc. Natl. Acad. Sci. USA. 1982;79:5597–5601. doi: 10.1073/pnas.79.18.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chavey C., Mari B., Monthouel M.-N., Bonnafous S., Anglard P., Van Obberghen E., Tartare-Deckert S. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 2003;278:11888–11896. doi: 10.1074/jbc.M209196200. [DOI] [PubMed] [Google Scholar]
  8. Claffey K.P., Wilkison W.O., Spiegelman B.M. Vascular endothelial growth factor: regulation by cell differentiation and activated second messenger pathways. J. Biol. Chem. 1992;267:16317–16322. [PubMed] [Google Scholar]
  9. Cousin B., Andre M., Arnaud E., Penicaud L., Casteilla L. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem. Biophys. Res. Commun. 2003;301:1016–1022. doi: 10.1016/S0006-291X(03)00061-5. [DOI] [PubMed] [Google Scholar]
  10. Crandall D.L., Hausman G.J., Kral J.G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4:211–232. doi: 10.3109/10739689709146786. [DOI] [PubMed] [Google Scholar]
  11. Dobson D.E., Kambe A., Block E., Dion T., Lu H., Castellot J.J., Jr., Spiegelman B.M. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990;61:223–230. doi: 10.1016/0092-8674(90)90803-M. [DOI] [PubMed] [Google Scholar]
  12. Duplaa C., Jaspard B., Moreau C., D’Amore P.A. Identification and cloning of a secreted protein related to the cysteine-rich domain of frizzled evidence for a role in endothelial cell growth control. Circ. Res. 1999;84:1433–1445. doi: 10.1161/01.res.84.12.1433. [DOI] [PubMed] [Google Scholar]
  13. Erickson G.R., Gimble J.M., Franklin D.M., Rice H.E., Awad H., Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitroin vivo. Biochem. Biophys. Res. Commun. 2002;290:763–769. doi: 10.1006/bbrc.2001.6270. [DOI] [PubMed] [Google Scholar]
  14. Frye C.A., Patrick C.W., Jr. Isolation and culture of rat microvascular endothelial cells. In Vitro Cell Dev. Biol. Anim. 2002;38:208–212. doi: 10.1290/1071-2690(2002)038<0208:IACORM>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  15. Hutley L.J., Herington A.C., Shurety W., Cheung C., Vesey D.A., Cameron D.P., Prins J.B. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 2001;281:E1037–E1044. doi: 10.1152/ajpendo.2001.281.5.E1037. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa T., Tamai Y., Zorn A.M., Yoshida H., Seldin M.F., Nishikawa S., Taketo M.M. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development. 2001;128:25–33. doi: 10.1242/dev.128.1.25. [DOI] [PubMed] [Google Scholar]
  17. Kao Y.H., Hiipakka R.A., Liao S. Modulation of obesity by a green tea catechin. Am. J. Clin. Nutr. 2000;72:1232–1234. doi: 10.1093/ajcn/72.5.1232. [DOI] [PubMed] [Google Scholar]
  18. Kawaguchi N., Toriyama K., Nicodemou-Lena E., Inou K., Torii S., Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA. 1998;95:1062–1066. doi: 10.1073/pnas.95.3.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kondo T., Ohta T., Igura K., Hara Y., Kaji K. Tea catechins inhibit angiogenesis in vitro measured by human endothelial cell growthmigration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett. 2002;180:139–144. doi: 10.1016/S0304-3835(02)00007-1. [DOI] [PubMed] [Google Scholar]
  20. Mao C., Malek O.T., Pueyo M.E., Steg P.G., Soubrier F. Differential expression of rat frizzled-related frzb-1 and frizzled receptor fz1 and fz2 genes in the rat aorta after balloon injury. Arterioscler. Thromb. Vasc. Biol. 2000;20:43–51. doi: 10.1161/01.atv.20.1.43. [DOI] [PubMed] [Google Scholar]
  21. Minasi M.G., Riminucci M., DeAngelis L., Borello U., Berarducci B., Innocenzi A., Caprioli A., Sirabella D., Baiocchi M., De Maria M., Boratto B., Jaffredo T., Broccoli V., Bianco P., Cossu G. The meso-angioblast: a multipotentselfrenewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development. 2002;129:2773–2783. doi: 10.1242/dev.129.11.2773. [DOI] [PubMed] [Google Scholar]
  22. Miranville A., Heeschen C., Sengenes C., Curat C.A., Busse R., Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110:349–355. doi: 10.1161/01.CIR.0000135466.16823.D0. [DOI] [PubMed] [Google Scholar]
  23. Mokdad A.H., Ford E.S., Bowman B.A., Dietz W.H., Vinicor F., Bales V.S., Marks J.S. Prevalence of obesity, diabetes, and obesity-related health risk factors. J. Am. Med. Assoc. 2003;289:76–79. doi: 10.1001/jama.289.1.76. [DOI] [PubMed] [Google Scholar]
  24. Ouchi N., Kobayashi H., Kihara S., Kumada M., Sato K., Inoue T., Funahashi T., Walsh K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 2004;279:1304–1309. doi: 10.1074/jbc.M310389200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Planat-Benard V., Silvestre J.-S., Cousin B., Andre M., Nibbelink M., Tamarat R., Clergue M., Manneville C., Saillan-Barreau C., Duriez M., Tedgui A., Levy B., Peicaud L., Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109:656–663. doi: 10.1161/01.CIR.0000114522.38265.61. [DOI] [PubMed] [Google Scholar]
  26. Pollman M.J., Naumovski L., Gibbons G.H. Endothelial cell apoptosis in capillary network remodeling. J. Cell. Physiol. 1999;178:359–370. doi: 10.1002/(SICI)1097-4652(199903)178:3<359::AID-JCP10>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  27. Rupnick M.A., Panigrahy D., Zhang C.Y., Dallabrida S.M., Lowell B.B, Langer R., Folkman M.J. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A. 2002;99:10730–10735. doi: 10.1073/pnas.162349799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saffari Y., Sadrzadeh S.M. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci. 2004;74:1513–1518. doi: 10.1016/j.lfs.2003.08.019. [DOI] [PubMed] [Google Scholar]
  29. Sartippour M.R., Shao Z-M., Heber D., Beatty P., Zhang L., Liu C., Ellis L., Liu W., Go V.L., Brooks M.N. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J. Nutr. 2002;132:2307–2311. doi: 10.1093/jn/132.8.2307. [DOI] [PubMed] [Google Scholar]
  30. Schroeder P., Klotz L.O., Sies H. Amphiphilic properties of (−)-epicatechin and their significance for protection of cells against peroxynitrite. Biochem. Biophys. Res. Commun. 2003;307:69–73. doi: 10.1016/S0006-291X(03)01132-X. [DOI] [PubMed] [Google Scholar]
  31. Sierra-Honigmann M.R., Nath A.K., Murakami C., Garcia-Cardena G., Papapetropoulos A., Sessa W.C., Madge L.A., Schechner J.S., Schwabb M.B., Polverini P.J., Flores Riveros J.R. Biological action of leptin as an angiogenic factor. Science. 1998;281:1683–1686. doi: 10.1126/science.281.5383.1683. [DOI] [PubMed] [Google Scholar]
  32. Singh A.K., Seth P., Anthony P., Husain M.M., Madhavan S., Mukhtar H., Maheshwaria R.K. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Arch. Biochem. Biophys. 2002;401:29–37. doi: 10.1016/S0003-9861(02)00013-9. [DOI] [PubMed] [Google Scholar]
  33. Stein O., Stein Y. Bovine aortic endothelial cells display macrophage-like properties towards acetylated125I-labelled low density lipoprotein. Biochim. Biophys. Acta. 1980;620:631–635. doi: 10.1016/0005-2760(80)90155-1. [DOI] [PubMed] [Google Scholar]
  34. Tanaka R. Induction of a sister-chromatid exchange by nitrogen oxides and its prevention by SOD. J. Toxicol. Sci. 1997;22:199–205. doi: 10.2131/jts.22.3_199. [DOI] [PubMed] [Google Scholar]
  35. Tokida Y., Aratani Y., Morita A., Kitagawa Y. Production of two variant laminin forms by endothelial cells and shift of their relative levels by angiostatic steroids. J. Biol. Chem. 1990;265:18123–18129. [PubMed] [Google Scholar]
  36. Toriyama K., Kawaguchi N., Kitoh J., Tajima R., Inou K., Kitagawa Y., Torii S. Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng. 2002;8:157–165. doi: 10.1089/107632702753503144. [DOI] [PubMed] [Google Scholar]
  37. Wang Y.C., Bachrach U. The specific anti-cancer activity of green tea (−)-epigallocatechin-3-gallate (EGCG) Amino Acids. 2002;22:131–143. doi: 10.1007/s007260200002. [DOI] [PubMed] [Google Scholar]
  38. Wassermann P. The development of adipose tissue Handbook of Physiology. Washington, DC,: American Physiological Society; 1965. pp. 87–107. [Google Scholar]
  39. Wright M., Aikawa M., Szeto W., Papkoff J. Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem. Biophys. Res. Commun. 1999;263:384–388. doi: 10.1006/bbrc.1999.1344. [DOI] [PubMed] [Google Scholar]
  40. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES