Abstract
We have recently developed a protein-free medium (PFS) able to support the growth of Chinese hamster ovary (CHO) cells in suspension. Upon further supplementation with some plant protein hydrolysates, medium performances reached what could be observed in serum-containing media [Burteau et al. In Vitro Cell. Dev. Biol.-Anim. 39 (2003) 291]. Now, we describe the use of rice and wheat protein hydrolysates, as non-nutritional additives to the culture medium to support productivity and cell growth in suspension or in microcarriers. When CHO-320 cells secreting recombinant interferon-gamma (IFN-γ) were cultivated in suspension in a bioreactor with our PFS supplemented with wheat hydrolysates, the maximum cell density increased by 25% and the IFN-γ secretion by 60% compared to the control PFS. A small-scale perfusion system consisting of CHO-320 cells growing on and inside fibrous microcarriers under discontinuous operation was first developed. Under these conditions, rice protein hydrolysates stimulated recombinant IFN-γ secretion by 30% compared to the control PFS. At the bioreactorscale, similar results were obtained but when compared to shake-flasks studies, nutrients, oxygen or toxic by-products gradients inside the microcarriers seemed to be the main limitation of the system. An increase of the perfusion rate to maintain glucose concentration over 5.5 mM and dissolved oxygen (DO) at 60% was able to stimulate the production of IFN-γ to a level of 6.6 μg h−1 g−1 of microcarriers after 160 h when a cellular density of about 4 × 108 cell g−1 of carriers was reached.
Keywords: Bioreactor, CHO-320 cells, Fibra-cel®, Interferon-gamma (IFN-γ), Microcarriers, Perfusion, Plant protein hydrolysates (peptones), Protein-free
Full Text
The Full Text of this article is available as a PDF (290.6 KB).
Glossary
- AU
arbitrary units
- CHO
Chinese hamster ovary
- DO
dissolved oxygen
- LDH
lactate deshydrogenase
- IFN-y
interferon-gamma
- PFA
protein-free medium for adhesion
- PFS
protein-free medium for suspension
- RP
rice protein hydrolysates
- WP
wheat protein hydrolysates.
References
- Agathos S.N. Insect cell bioreactors. Cytotechnology. 1996;20:173–189. doi: 10.1007/BF00350398. [DOI] [PubMed] [Google Scholar]
- Borys M.C., Linzer D.I.H., Papoutsakis E.T. Ammonia affects the glycisylation patterns of recombinant mouse placental lactogen-1 by Chinese hamster ovary cells in a pH-dependent manner. Biotechnol. Bioeng. 1994;43:505–514. doi: 10.1002/bit.260430611. [DOI] [PubMed] [Google Scholar]
- Bragonzi A., Distefano G., Buckberry L.D., Acerbis G., Foglieni C., Lamotte D., Campi G., Marc A., Soria M.R., Jenkins N., Monaco L. A new Chinese hamster ovary cell line expressing a 2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta. 2000;1474:273–282. doi: 10.1016/s0304-4165(00)00023-4. [DOI] [PubMed] [Google Scholar]
- Burteau C.C., Verhoeye F.R., Mols J.F., Ballez J.-S., Agathos S.N., Schneider Y.-J. Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interféron-γ-producing CHO cell line. In Vitro Cell. Dev. Biol.-Animal. 2003;39:291–296. doi: 10.1290/1543-706X(2003)039<0291:FOAPCC>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Castro P.M., Hayter P.M., Ison A.P., Bull A.T. Application of a statistical design to the optimisation of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 1992;38:84–90. doi: 10.1007/BF00169424. [DOI] [PubMed] [Google Scholar]
- Castro P.M., Ison A.P., Hayter P.M., Bull A.T. The macroheterogeneity of recombinant human interferon-gamma produced by Chinese-hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol Appl Biochem. 1995;21:87–100. [PubMed] [Google Scholar]
- Chu L., Robinson D.K. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 2001;12:180–187. doi: 10.1016/S0958-1669(00)00197-X. [DOI] [PubMed] [Google Scholar]
- Coppen S.R., Newsam R., Bull A.T., Baines A.J. Heterogeneity within populations of recombinant chinese hamster ovary cells expressing human interferon-γ. Biotechnol. Bioeng. 1995;46:147–158. doi: 10.1002/bit.260460208. [DOI] [PubMed] [Google Scholar]
- Fekkes D., van Dalen A., Edelman M., Voskuilen A. Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde. J Chromatogr B Biomed Appl. 1995;669(2):177–186. doi: 10.1016/0378-4347(95)00111-U. [DOI] [PubMed] [Google Scholar]
- Franek F., Hohenwarter O., Katinger H. Plant protein Hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol. Prog. 2000;16:688–692. doi: 10.1021/bp0001011. [DOI] [PubMed] [Google Scholar]
- Franek F., Katinger H. Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol. Prog. 2002;18:155–158. doi: 10.1021/bp0101278. [DOI] [PubMed] [Google Scholar]
- Goldman M.H., James D.C., Rendall M., Ison A.P., Hoare M., Bull A.T. Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol. Bioeng. 1998;60:596–607. doi: 10.1002/(SICI)1097-0290(19981205)60:5<596::AID-BIT10>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Gu X., Xie L., Harmon B.J., Wang D.I.C. Influence of primatone RL supplementation on sialylation of recombinant human interferon-γ produced by Chinese hamster ovary cell culture using serum-free media. Biotechnol. Bioeng. 1997;56:352–360. doi: 10.1002/(SICI)1097-0290(19971120)56:4<353::AID-BIT1>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Hayter P.M., Curling E.M., Gould M.L., Baines A.J., Jenkins N., Salmon I., Strange P.G., Bull A.T. The effect of the dilution rate on CHO cell physiology and recombinant interferon-γ production in glucose-limited chemostat culture. Biotechnol. Bioeng. 1993;42:1077–1085. doi: 10.1002/bit.260420909. [DOI] [PubMed] [Google Scholar]
- Hayter P.M., Curling E.M., Baines A.J., Jenkins N., Salmon I., Strange P.G., Bull A.T. Chinese hamster ovary cell growth and interferon production kinetics in stirred-batch culture. Appl. Microbiol. Biotechnol. 1991;34:559–564. doi: 10.1007/BF00167898. [DOI] [PubMed] [Google Scholar]
- Heidemann R., Zhang C., Qi H., Rule J.L., Rozales C., Park S., Chuppa S., Ray M., Michaels J., Konstantinov K., Naveh D. The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology. 2000;32:157–167. doi: 10.1023/A:1008196521213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu Y.-C., Kaufman J., Cho M.W., Golding H., Shiloach J. Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system. Biotechnol. Prog. 2000;16:744–750. doi: 10.1021/bp000112u. [DOI] [PubMed] [Google Scholar]
- Ikonomou L., Drugmand J.-C., Bastin G., Schneider Y-J., Agathos S.N. Microcarrier culture of lepidopteran cell lines : implications for growth and recombinant protein production. Biotechnol. Prog. 2002;18:1345–1355. doi: 10.1021/bp0255107. [DOI] [PubMed] [Google Scholar]
- Jan D.C.-H., Jones S.J., Emery A.N., Al-Rubeai M. Peptonea low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology. 1994;16:17–26. doi: 10.1007/BF00761775. [DOI] [PubMed] [Google Scholar]
- Kaufman J.B., Wang G., Zhang W., Valle M.A., Shiloach J. Continuous production and recovery of recombinant Ca2+ binding receptor from HEK 293 cells using perfusion through a packed bed bioreactor. Cytotechnology. 2000;33:3–11. doi: 10.1023/A:1008143132056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen M.J., Rapson N.T. Development of a serum-free culture medium for the large-scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology. 1995;17:153–163. doi: 10.1007/BF00749653. [DOI] [PubMed] [Google Scholar]
- Kompier R., Kislev N., Segal I., Kadouri A. Use of a stationary bed reactor and serum-free medium for the production of recombinant proteins in insect cells. Enzyme Microb. Technol. 1991;13:822–827. doi: 10.1016/0141-0229(91)90066-J. [DOI] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landauer K., Wiederkum S., Dürrschmid M., Klug H., Simic G., Blüml G., Doblhoff-Dier O. Influence of carboxymethyl dextran and ferric citrate on the adhesion of CHO cells on microcarriers. Biotechnol. Prog. 2003;19:21–29. doi: 10.1021/bp025568l. [DOI] [PubMed] [Google Scholar]
- Lao M.-S., Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog. 1997;13:688–691. doi: 10.1021/bp9602360. [DOI] [PubMed] [Google Scholar]
- Lee G.M., Chuck A.S., Palsson B.O. Cell culture conditions determine the enhancement of specific monoclonal antibody productivity of calcium alginate-entrapped S3H5/γ2bA2 hybridoma cells. Biotechnol. Bioeng. 1993;41:330–340. doi: 10.1002/bit.260410307. [DOI] [PubMed] [Google Scholar]
- Lee G.M., Palsson B.O. Immobilization can improve the stability of hybridoma antibody productivity in serum-free media. Biotechnol. Bioeng. 1990;36:1049–1055. doi: 10.1002/bit.260361010. [DOI] [PubMed] [Google Scholar]
- Leelavatcharamas V., Emery A.N., Al-Rubeai M. Use of cell cycle analysis to characterise growth and interferon-γ production in perfusion culture of CHO cells. Cytotechnology. 1999;30:56–69. doi: 10.1023/A:1008055904642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merten O.-W., Cruz P.E., Rochette C., Geny-Fiamma C., Bouquet C., Gonçalves D., Danos O., Carrondo M.J. Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol. Prog. 2001;17:326–335. doi: 10.1021/bp000162z. [DOI] [PubMed] [Google Scholar]
- Nishijima K.I., Fujiki T., Kojima H., Iijima S. The effects of cell adhesion on the growth and protein productivity of animal cells. Cytotechnology. 2000;33:147–155. doi: 10.1023/A:1008189802014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peshwa M.V., Kyung Y.-S., McClure D.B., Hu W.-S. Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotechnol. Bioeng. 1993;41:179–187. doi: 10.1002/bit.260410203. [DOI] [PubMed] [Google Scholar]
- Racher A.J., Fooks A.R., Griffiths J.B. Culture of 293 cells in different culture systems: cell growth and recombinant adenovirus production. Biotechnol. Tech. 1995;9:169–174. doi: 10.1007/BF00157073. [DOI] [Google Scholar]
- Rasmussen B., Davis R., Thomas J., Reddy P. Isolation, characterization and recombinant protein expression in Veggie-CHO: a serum-free CHO host cell line. Cytotechnology. 1998;28:31–42. doi: 10.1023/A:1008052908496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider Y.-J. Optimization of hybridoma cell growth and monoclonal antibody secretion in chemically defined serum- and protein-free culture medium. J. Immunol. Meth. 1989;116:65–77. doi: 10.1016/0022-1759(89)90314-1. [DOI] [PubMed] [Google Scholar]
- Wang G., Zhang W., Jacklin C., Freedman D., Eppstein L., Kadouri A. Modified CelliGen-packed bed bioreactor for hybridoma cell cultures. Cytotechnology. 1992;9:41–49. doi: 10.1007/BF02521730. [DOI] [PubMed] [Google Scholar]
- Watson E., Shah B., Leiderman L., Hsu Y.-R., Karkare S., Lu H.S., Lin F.-K. Comparison of N-linked oligosaccharides of recombinant human tissue kalikrein produced by Chinese hamster ovary cells on microcarrier beads and in serum-free suspension culture. Biotechnol. Prog. 1994;10:39–44. doi: 10.1021/bp00025a004. [DOI] [PubMed] [Google Scholar]
- Yang M., Butler M. Effects of ammonia on CHO cell growtherythropoietin production and glycosylation. Biotechnol. Bioeng. 2000;68:370–380. doi: 10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
