Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2004 Jan;44(1-2):27–46. doi: 10.1023/B:CYTO.0000043397.94527.84

Modelling of Mammalian Cells and Cell Culture Processes

FR Sidoli, A Mantalaris, SP Asprey
PMCID: PMC3449502  PMID: 19003227

Abstract

Mammalian cell cultures represent the major source for a number of very high-value biopharmaceutical products, including monoclonal antibodies (MAbs), viral vaccines, and hormones. These products are produced in relatively small quantities due to the highly specialised culture conditions and their susceptibility to either reduced productivity or cell death as a result of slight deviations in the culture conditions. The use of mathematical relationships to characterise distinct parts of the physiological behaviour of mammalian cells and the systematic integration of this information into a coherent, predictive model, which can be used for simulation, optimisation, and control purposes would contribute to efforts to increase productivity and control product quality. Models can also aid in the understanding and elucidation of underlying mechanisms and highlight the lack of accuracy or descriptive ability in parts of the model where experimental and simulated data cannot be reconciled. This paper reviews developments in the modelling of mammalian cell cultures in the last decade and proposes a future direction – the incorporation of genomic, proteomic, and metabolomic data, taking advantage of recent developments in these disciplines and thus improving model fidelity. Furthermore, with mammalian cell technology dependent on experiments for information, model-based experiment design is formally introduced, which when applied can result in the acquisition of more informative data from fewer experiments. This represents only part of a broader framework for model building and validation, which consists of three distinct stages: theoretical model assessment, model discrimination, and model precision, which provides a systematic strategy from assessing the identifiability and distinguishability of a set of competing models to improving the parameter precision of a final validated model.

Keywords: Mammalian cells, Model discrimination, Model distinguishability, Model identifiability, Optimal experiment design, Parameter precision, Population balance model, Single cell model

Full Text

The Full Text of this article is available as a PDF (218.1 KB).

References

  1. Asprey S.P., Machietto S. Statistical tools for optimal dynamic model building. Comput. Chem. Eng. 2000;24:1261–1267. [Google Scholar]
  2. Asprey S.P. and Mantalaris A. 2001. Global parametric identifiability of a dynamic unstructured model of hybridoma cell culture. In: Proceedings of the 8th International Conference on Computer Applications in Biotechnology.
  3. Asprey S.P., Machietto S. Designing robust optimal dynamic experiments. J. Process Control. 2002;12:545–556. [Google Scholar]
  4. Bailey J.E. Mathematical modeling and analysis in biochemical engineering. Biotech. Progr. 1998;14:8–20. doi: 10.1021/bp9701269. [DOI] [PubMed] [Google Scholar]
  5. Barford J.P., Phillips P.J., Harbour C. Simulation of animal cell metabolism. Cytotechnology. 1992;10:63–74. doi: 10.1007/BF00376101. [DOI] [PubMed] [Google Scholar]
  6. Batt B.C., Kompala D.S. A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures. Biotech. Bioeng. 1989;34:515–531. doi: 10.1002/bit.260340412. [DOI] [PubMed] [Google Scholar]
  7. Bernaerts K., Versyck K.J., Van Impe J.F. On the design of optimal dynamic experiments for parameter estimation of a ratkowsky-type growth kinetics at suboptimal temperatures. Int. J. Food Microbiol. 2000;54:27–38. doi: 10.1016/s0168-1605(99)00140-3. [DOI] [PubMed] [Google Scholar]
  8. Cain S.J., Chau C.C. Transition probability cell cycle model with product formation. Biotech. Bioeng. 1998;58:387–399. [PubMed] [Google Scholar]
  9. Cazzador L., Mariani L. Growth and production modelling in hybridoma continuous culture. Biotech. Bioeng. 1993;38:781–787. doi: 10.1002/bit.260421109. [DOI] [PubMed] [Google Scholar]
  10. Cruz H.J., Moreira J.L., Carrondo M.J.T. Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotech. Bioeng. 1999;66:104–113. doi: 10.1002/(sici)1097-0290(1999)66:2<104::aid-bit3>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  11. Dalili M., Sayles G.D., Ollis D.F. Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotech. Bioeng. 1990;36:74–82. doi: 10.1002/bit.260360110. [DOI] [PubMed] [Google Scholar]
  12. Diekmann O., Heijmans H.J.A.M., Thieme H.R. On the stability of the cell size distribution. J. Math. Biol. 1984;19:227–248. [Google Scholar]
  13. Domach M.M., Shuler M.L. A finite representation model for an asynchronous culture of E. coli. Biotech. Bioeng. 1984;26:877–884. doi: 10.1002/bit.260260810. [DOI] [PubMed] [Google Scholar]
  14. Duncan A. 2002. Antibodies hold the key. Chemistry & Industry.
  15. Eakman J.M., Fredrickson A.G., Tsuchiya H.M. Statistics and dynamics of microbial cell populations. Chem. Eng. Progr. 1966;62:37–49. [Google Scholar]
  16. Europa A.F., Gambhir A., Fu P.C., Hu W.S. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotech. Bioeng. 2000;67:25–34. doi: 10.1002/(sici)1097-0290(20000105)67:1<25::aid-bit4>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  17. Follstad B.D., Balcarcel R.R., Stephanopoulos G., Wang D.I.C. Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotech. Bioeng. 1999;63:675–683. doi: 10.1002/(sici)1097-0290(19990620)63:6<675::aid-bit5>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  18. Frame K.K., Hu W.-S. Kinetic study of hybridoma cell growth in continuous culture. ii. behavior of producers and comparison to nonproducers. Biotech. Bioeng. 1991;38:1020–1028. doi: 10.1002/bit.260380910. [DOI] [PubMed] [Google Scholar]
  19. Fredrickson A.G., Ramkrishna D., Tsuchiya H.M. Statistics and dynamics of procaryotic cell population. Math. Biosci. 1967;1:327–374. [Google Scholar]
  20. Gombert A.K., Nielsen J. Mathematical modelling of metabolism. Curr. Opin. Biotech. 2000;11:180–186. doi: 10.1016/s0958-1669(00)00079-3. [DOI] [PubMed] [Google Scholar]
  21. Gray L. and Jasuja R. 2001. B-147 The New Future of Biotechnology: Enabling Technologies and Star Products. Business Communication Company, Inc.
  22. Hatzis C., Srienc F., Fredrickson A.G. Multistaged corpuscular models of microbiol growth: Monte carlo simulations. Biosystems. 1995;36:19–35. doi: 10.1016/0303-2647(95)01524-o. [DOI] [PubMed] [Google Scholar]
  23. Hiller G.W., Aeschlimann A.D., Clark D.S., Blanch H.W. A kinetic analysis of hybridoma growth and metabolism in continuous suspension culture on serum-free medium. Biotech. Bioeng. 1991;38:733–741. doi: 10.1002/bit.260380707. [DOI] [PubMed] [Google Scholar]
  24. Jacques J.A. Design of experiments. J. Franklin Inst. 1998;335B:259–279. [Google Scholar]
  25. Jang J.D., Barford J.P. An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem. Eng. J. 2000;4:153–168. [Google Scholar]
  26. Kim B.-G., Shuler M.L. A structured, segregated model for genetically modified E. coli cells and its use for prediction of plasmid stability. Biotech. Bioeng. 1990;36:581–592. doi: 10.1002/bit.260360605. [DOI] [PubMed] [Google Scholar]
  27. Körkel S., Bauer I., Bock H.G. and Schloder J.P. 1999. A sequential approach for nonlinear optimum experimental design in dae systems. In: Proceedings of the International Workshop on Scientific Computation in Chemical Engineering.
  28. Kromenaker S., Srienc F. Cell-cycle-dependent protein accumulation by producer and nonproducer murine hybridoma cell lines: a population analysis. Biotech. Bioeng. 1991;38:665–677. doi: 10.1002/bit.260380612. [DOI] [PubMed] [Google Scholar]
  29. Kurokawa H., Park Y.S., Iijima S., Kobayashi T. Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentration. Biotech. Bioeng. 1994;44:95–103. doi: 10.1002/bit.260440114. [DOI] [PubMed] [Google Scholar]
  30. Lee Y.-K., Yap P.-K., Teoh A.-P. Correlation between steady-state cell concentration and cell death of hybridoma cultures in chemostat. Biotech. Bioeng. 1995;45:18–26. doi: 10.1002/bit.260450104. [DOI] [PubMed] [Google Scholar]
  31. Linardos T.I., Kalogerakis N., Behie L.A. The effect of specific growth rate and death rate on monoclonal antibody production in hybridoma chemostat culture. Can. J. Chem. Engin. 1991;69:429–438. [Google Scholar]
  32. Linz M., Zeng A.-P., Wagner R., Deckwer W.-D. Stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line in batch and continuous cultures. Biotech. Progr. 1997;13:453–463. doi: 10.1021/bp970032z. [DOI] [PubMed] [Google Scholar]
  33. Liou J.J., Srienc F., Fredrickson A.G. Solutions of population balance models based on a successive generations approach. Chemical Eng. Sci. 1997;52:1529–1540. [Google Scholar]
  34. Lüdemann I., Pörtner R., Schaefer C., Schick K., Sramkova K., Reher K., Neumaier M., Franek F., Markl H. Improvement of culture stability of non-anchorage-dependent cells grown in serum-free media through immobilization. Cytotechnology. 1996;19(2):111–124. doi: 10.1007/BF00749766. [DOI] [PubMed] [Google Scholar]
  35. Mantzaris N.V., Liou J.J., Daoutidis P., Srienc F. Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration. J. Biotech. 1999;71:157–174. [Google Scholar]
  36. Mantzaris N.V., Daoutidis P., Srienc F. Numerical solution of multi-variable cell population balance models. I. Finite difference methods. Comput. Chem. Eng. 2001;25:1411–1440. [Google Scholar]
  37. Mantzaris N.V., Daoutidis P., Srienc F. Numerical solution of multi-variable cell population balance models. II. Spectral methods. Comput. Chem. Eng. 2001;25:1441–1462. [Google Scholar]
  38. Mantzaris N.V., Daoutidis P., Srienc F. Numerical solution of multi-variable cell population balance models. III. Finite element methods. Comput. Chem. Eng. 2001;25:1463–1481. [Google Scholar]
  39. Martens D.E., Sipkema E.M., de Gooijer C.D., Beuvery E.C., Tramper J. A combined cell-cycle and metabolic model for the growth of hybridoma cells in steady-state continuous culture. Biotech. Bioeng. 1995;48:49–65. doi: 10.1002/bit.260480109. [DOI] [PubMed] [Google Scholar]
  40. Mason R.L., Gunst R.F., Hess J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. New York, USA: John Wiley & Sons; 2003. [Google Scholar]
  41. Morales J.A.A. 2001. Dynamic modelling of mammalian cell culture systems. MSc thesis, University of London.
  42. Nathanson M.H., Saidel G.M. Multiple-objective criteria for optimal experimental design: application to ferrokinetics. Am. J. Physiol. 1985;248:R378–R386. doi: 10.1152/ajpregu.1985.248.3.R378. [DOI] [PubMed] [Google Scholar]
  43. Paredes C., Prats E., Cairo J.J., Azorin F., Cornudella L., Godia F. Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology. 1999;30:85–93. doi: 10.1023/A:1008012518961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Phillips P.J. 1996. The interaction of Experimentation and Computer Modelling for Animal Cell Culture, University of Sydney.
  45. Pörtner R., Schäfer T. Modelling hybridoma cell growth and metabolism-a comparison of selected models and data. J. Biotech. 1996;49:119–135. doi: 10.1016/0168-1656(96)01535-0. [DOI] [PubMed] [Google Scholar]
  46. Pörtner R., Schilling A., Lüdemann I., Märkl H. High density fed-batch cultures for hybridoma cells performed with the aid of a kinetic model. Bioprocess Eng. 1996;00:000–000. [Google Scholar]
  47. Ramkrishna D. Population balances: Theory and Applications to Particulate Systems in Engineering. New York: Academic Press; 2000. [Google Scholar]
  48. Ramkrishna D. Statistical Models of Cell Populations. Adv. Biochem. Eng. 1979;11:1–47. [Google Scholar]
  49. Ramkrishna D., Fredrickson A.G., Tsuchiya H.M. On the relationships between various distribution functions in balanced unicellular growth. Bull. Math. Biophys. 1968;30:319–323. [Google Scholar]
  50. Sanderson C.S. 1997. The Development and Application of a Structured Model for Animal Cell Metabolism. Ph.D thesis, University of Sydney.
  51. Sanderson C.S., Barton G.W., Barford J.P. Optimisation of animal cell culture media using dynamic simulation. Comput. Chem. Eng. 1995;19:S681–S686. [Google Scholar]
  52. Schilling C.H., Edwards J.S., Palsson B.O. Toward metabolic phenomics: analysis of genomic data using flux balances. Biotech. Progr. 1999;15:288–295. doi: 10.1021/bp9900357. [DOI] [PubMed] [Google Scholar]
  53. Shuler M. Single-cell models: promise and limitations. Cytotechnology. 1999;71:225–228. doi: 10.1016/s0168-1656(99)00024-3. [DOI] [PubMed] [Google Scholar]
  54. Srienc F. Short communication: Cytometric data as the basis for rigorous models of cell population dynamics. J. Biotech. 1999;71:233–238. [Google Scholar]
  55. Tomita M., Hashimoto K., Takahashi K., Shimizu T.S., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J.G., Hutchison C.A., III E-cell: Software environment for whole-cell simulation. Bioinformatics. 1999;15:72–84. doi: 10.1093/bioinformatics/15.1.72. [DOI] [PubMed] [Google Scholar]
  56. Tsuchiya H.M., Fredrickson A.G., Aris R. Dynamics of microbial cell populations. Adv. Chem. Eng. 1966;6:125–206. [Google Scholar]
  57. Tyson J.J., Novak B. Regulation of the eukaryotic cell cycle: molecular anatagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 2001;210:249–263. doi: 10.1006/jtbi.2001.2293. [DOI] [PubMed] [Google Scholar]
  58. Tziampazis E., Sambanis A. Modeling of cell culture processes. Cytotechnology. 1994;14:191–204. doi: 10.1007/BF00749616. [DOI] [PubMed] [Google Scholar]
  59. Versyck K.J., Claes J.E., Van Impe J.F. Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotech. Progr. 1997;13:524–531. [Google Scholar]
  60. Versyck K.J., Bernaerts K., Geeraerd A.H., Van Impe J.F. Introducing optimal experimental design in predictive modeling: A motivating example. Int. J. Food Microbiol. 1999;51:39–51. doi: 10.1016/s0168-1605(99)00093-8. [DOI] [PubMed] [Google Scholar]
  61. Villadsen J. Short communication: On the use of population balances. J. Biotech. 1999;71:251–253. [Google Scholar]
  62. Walter E. Identifiability of Parametric Models. Oxford: Pergamon Press; 1987. [Google Scholar]
  63. Wu P., Ray N.G., Shuler M.L. A single cell model of Chinese hamster ovary cells. Ann NY Aca Sci. 1992;665:152–187. doi: 10.1111/j.1749-6632.1992.tb42583.x. [DOI] [PubMed] [Google Scholar]
  64. Zeng A.-P., Deckwer W.-D., Hu W.-S. Determinants and rate laws of growth and death of hybridoma cells in continuous culture. Biotech. Bioeng. 1998;57:642–654. [PubMed] [Google Scholar]
  65. Zhou W., Rehm J., Europa A., Hu W.-S. Alteration of mammalian cell metabolism by dynamic nutrient feeding. Cytotechnology. 1997;24:99–108. doi: 10.1023/A:1007945826228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zullo L.C. 1991. Computer-aided Design of Experiments: An Engineering Approach. Ph.D thesis, University of London.

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES