Abstract
Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of ∼5 × 106 cells mL-1. Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell-1 day-1. Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized (∼40 mg L-1) at 0.2 nL cell-1 day-1. The volumetric protein productivity (∼60 mg L-1 day-1 was maximized above 0.3 nL cell-1 day-1. The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.
Keywords: Cell specific perfusion feed rates, CHO, Control, Optimization, t-PA, Viable cell probe
Full Text
The Full Text of this article is available as a PDF (176.5 KB).
References
- Cerckel I, Garcia A, Degouys V, Dubois D, Fabry L., Miller AOA. Dielectric spectroscopy of mammalian cells 1. Evaluation of the biomass of HeLa-and CHO cells in suspension by low-frequency dielectric spectroscopy. Cytotechnology. 1993;13:185–193. doi: 10.1007/BF00749814. [DOI] [PubMed] [Google Scholar]
- Cohen SA, Strydom DJ. Amino acid analysis using phenylisothiocyanate derivatives. Anal Biochem. 1988;174:1–16. doi: 10.1016/0003-2697(88)90512-X. [DOI] [PubMed] [Google Scholar]
- Degouys V, Cerckel I, Garcia A, Harfield J, Dubois D, Fabry L, Miller AOA. Dielectric spectroscopy of mammalian cells 2. Simultaneous in situ evaluation by aperture inpedance pulse spectroscopy and low-frequency dielectric spectroscopy of the biomass of HTC cells on Cytodex 3. Cytotechnology. 1993;13:195–202. doi: 10.1007/BF00749815. [DOI] [PubMed] [Google Scholar]
- Dowd JE, Kwok KE, Piret JM. Increased t-PA yields using ultrafiltration of product from CHO fed-batch culture. Biotechnol Prog. 2000;16:786–794. doi: 10.1021/bp000079b. [DOI] [PubMed] [Google Scholar]
- Dowd JE, Kwok KE, Piret JM. Glucose-based optimization of CHO cell perfusion culture. Biotechnol Bioeng. 2001;75:252–256. doi: 10.1002/bit.10013. [DOI] [PubMed] [Google Scholar]
- Dowd JE, Weber I, Rodriguez B, Piret JM, Kwok KE. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies. Biotechnol Bioeng. 1999;63:484–492. doi: 10.1002/(SICI)1097-0290(19990520)63:4<484::AID-BIT12>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U, Marison IW. On-line determination of animal cell concentration. Biotechnol Bioeng. 2001;72:515–522. doi: 10.1002/1097-0290(20010305)72:5<515::AID-BIT1015>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Ducommun P, Kadouri A, Von Stockar U, Marison IW. On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng. 2002;77:316–323. doi: 10.1002/bit.1197. [DOI] [PubMed] [Google Scholar]
- Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese Hamster Ovary cells. Biotechnol Bioeng. 2000;69:204–212. doi: 10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Fehrenbach R, Comberbach M, Pêtre JO. On-line biomass monitoring by capacitance measurement. J Biotech. 1992;23:303–314. doi: 10.1016/0168-1656(92)90077-M. [DOI] [PubMed] [Google Scholar]
- Guan Y, Evans PM, Kemp RB. Specific heat flow rate: An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol Bioeng. 1998;58:87–94. doi: 10.1002/(SICI)1097-0290(19980605)58:5<464::AID-BIT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Guan YH, Kemp RB. On-line heat flux measurements improve the culture medium for the growth and productivity of genetically engineered CHO cells. Cytotechnology. 1998;30:107–120. doi: 10.1023/A:1008038515285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen SR, Augustin J, Grings E, Tassinari P. Precolumn phenylisothiocyanate derivatization and liquid chromatography of free amino acids in biological samples. Food Chem. 1993;46:319–323. doi: 10.1016/0308-8146(93)90127-2. [DOI] [Google Scholar]
- Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB. The dielectric permittivity of microbial suspensions at radio frequencies; A novel method for the real-time estimation of microbial biomass. Enzyme Microb Technol. 1987;9:181–186. doi: 10.1016/0141-0229(87)90075-5. [DOI] [Google Scholar]
- Heidemann R, Zhang C, Qi H, Rule JL, Rozales C, Sinyoung P, Chuppa S, Ray M, Michaels J, Konstantinov K, Naveh D. The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology. 2000;32:157–167. doi: 10.1023/A:1008196521213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiller G, Clark D, Blanch H. Cell retention chemostat studies of hybridoma cells. Analysis of hybridoma growth and metabolism in continuous suspension culture on serum free medium. Biotechnol Bioeng. 1993;42:185–195. doi: 10.1002/bit.260420206. [DOI] [PubMed] [Google Scholar]
- Konstantinov K, Chuppa S, Sajan E, Tsai Y, Yoon S, Golini F. Real-time biomass-concentration monitoring in animal cell cultures. Trends Biotech. 1994;12:324–333. doi: 10.1016/0167-7799(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Konstantinov KB, Pambayun R, Matanguihan R, Yoshida T, Perusich CM, Hu W-S. On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol Bioeng. 1992;40:1337–1342. doi: 10.1002/bit.260401107. [DOI] [PubMed] [Google Scholar]
- Konstantinov KB, Tsai Y-S, Moles D, Matanguihan R. Control of long-term perfusion Chinese Hamster Ovary cell culture by glucose auxostat. Biotechnol Prog. 1996;12:102–109. doi: 10.1021/bp950044p. [DOI] [PubMed] [Google Scholar]
- Kurkela R, Fraune E, Vihko P. Pilot-scale production of murine monoclonal antibodies in agitated, ceramic-matrix or hollow-fiber cell culture systems. BioTechniques. 1993;15:674–683. [PubMed] [Google Scholar]
- Kyung Y-S, Peshwa MV, Gryte DM, Hu W-S. High density culture of mammalian cells with dynamic perfusion based on on-line uptake rate measurements. Cytotechnology. 1994;14:183–190. doi: 10.1007/BF00749615. [DOI] [PubMed] [Google Scholar]
- Markx GH, Davey CL, Kell DB, Morris P. The dielectric permittivity at radio frequencies and the Bruggeman probe: Novel techniques for the on-line determination of biomass concentrations in plant cell cultures. J Biotech. 1991;20:279–290. doi: 10.1016/0168-1656(91)90337-U. [DOI] [Google Scholar]
- Maruhashi F, Murakami S, Baba K. Automated monitoring of cell concentration and viability using an image analysis system. Cytotechnology. 1994;15:281–289. doi: 10.1007/BF00762403. [DOI] [PubMed] [Google Scholar]
- Merten OW. Constructive improvement of the ultrasonic separation device ADI 1015. Cytotechnology. 2000;24:175–179. doi: 10.1023/A:1008147822625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merten OW, Palfi GE, Staheli J, Steiner J. Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas. Devel Biol Stand. 1985;66:357–360. [PubMed] [Google Scholar]
- Miller WM, Blanch HW, Wilke CR. A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate and pH. Biotechnol Bioeng. 1988;32:947–965. doi: 10.1002/bit.260320803. [DOI] [PubMed] [Google Scholar]
- Ozturk S, Thrift J, Blackie J, Naveh D. Real time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng. 1997;53:372–378. doi: 10.1002/(SICI)1097-0290(19970220)53:4<372::AID-BIT3>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Pelletier F, Fonteix C, De Silva AL, Marc A, Engasser JM. Software sensors for the monitoring of perfusion cultures: Evaluation of the hybridoma density and the medium composition from glucose concentration measurements. Cytotechnology. 1994;15:291–299. doi: 10.1007/BF00762404. [DOI] [PubMed] [Google Scholar]
- Sonderhoff SA, Kilburn DG, Piret JM. Analysis of mammalian viable cell biomass based on cellular ATP. Biotechnol Bioeng. 1992;39:859–864. doi: 10.1002/bit.260390807. [DOI] [PubMed] [Google Scholar]
- Van der Pol JJ, Joksch B, Gätgens J, Biselli M, De Gooijer CD, Tramper J, Wandrey C. On-line control of an immobilized hybridoma culture with multi-channel flow injection analysis. J Biotechnol. 1995;43:229–242. doi: 10.1016/0168-1656(95)00143-3. [DOI] [PubMed] [Google Scholar]
- Vits H, Hu W-S. Fluctuations in continuous mammalian cell bioreactors with retention. Biotechnol Prog. 1992;8:397–403. doi: 10.1021/bp00017a004. [DOI] [PubMed] [Google Scholar]
- Wu P, Ozturk S, Blackie JD, Thrift JC, Figueroa C, Naveh D. Evaluation and applications of optical cell density probes in mammalian cell bioreactors. Biotechnol Bioeng. 1995;45:495–502. doi: 10.1002/bit.260450606. [DOI] [PubMed] [Google Scholar]
- Zhou W, Hu WS. On line characterization of a hybridoma cell culture process. Biotechnol Bioeng. 1994;44:170–177. doi: 10.1002/bit.260440205. [DOI] [PubMed] [Google Scholar]