Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 May;42(1):21–33. doi: 10.1023/A:1026103405618

Equipment design considerations for large scale cell culture

David M Marks 1
PMCID: PMC3449506  PMID: 19002925

Abstract

Equipment design is frequently recognized as a key component in the success of GMP biologics manufacturing, but is not always implemented with full appreciation of the processing implications. In the case of mammalian cell culture, there are some recognized issues and risks that develop when transitioning to a large scale of operation. The developing demand for cell culture production capacity in the biopharmaceutical industry has led to a progressive increase in the scale of operation in the last decade. This review will provide a high level summary of the documented process difficulties unique to serum-free large scale (LS) cell culture, analyze the engineering constraints typical of these processes, and suggest some practical equipment design considerations to enhance the productivity, reliability and operability of such systems under GMP manufacturing conditions. A systems approach will be used to establish a good LS bioreactor design practice, providing a discussion on gas distribution, agitation, vessel design, SIP/CIP and control issues.

Keywords: Bioreactor, Cell culture, Large scale, Mass transfer, Mixing, Scale up, Stirred tank

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

References

  1. American Society of Mechanical Engineers 2002. ASME BPE-2002. http: / /www.asmeny.org/ catalog /html/ catgcs.htm
  2. Aunins J.G., Henzler H.-J. Aeration in cell culture bioreactors. In: Stephanopoulos G., Rehm H.-J., Reed G., Puhler A., Stadler P., editors. Biotechnology. 2nd edn. Weinheim/D: VCH Verlag GmbH; 1993. pp. 219–281. [Google Scholar]
  3. Chalmers J.L. Cells and bubbles in sparged bioreactors. Cytotechnology. 1994;15:311–320. doi: 10.1007/BF00762406. [DOI] [PubMed] [Google Scholar]
  4. Chisti Y. Animal cell culture in stirred bioreactors: Observations on scale-up. Bioproc Eng. 1993;9:191–196. doi: 10.1007/BF00369402. [DOI] [Google Scholar]
  5. Croughan M.S., Hammel J.F., Wang D.I.C. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng. 1987;29:130–141. doi: 10.1002/bit.260290117. [DOI] [PubMed] [Google Scholar]
  6. Croughan M.S., Sayre E.S., Wang D.I.C. Viscous reduction of turbulent damage in animal cell culture. Biotechnol Bioeng. 1989;33:862–872. doi: 10.1002/bit.260330710. [DOI] [PubMed] [Google Scholar]
  7. DeZengotita V., Kimura R., Miller W. Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnology. 1998;28:213–227. doi: 10.1023/A:1008010605287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Enfors S.O., Jahic M., Rozkov A., Xu B., Hecker M., Jurgen B., et al. Physiological responses to mixing in large scale bioreactors. J Biotechnol. 2001;85:175–185. doi: 10.1016/S0168-1656(00)00365-5. [DOI] [PubMed] [Google Scholar]
  9. Garnier A., Voyer R., Tom R., Perret S., Jardin B., Kamen A. Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology. 1996;22:53–63. doi: 10.1007/BF00353924. [DOI] [PubMed] [Google Scholar]
  10. Glaser V. Fermenters and bioreactors for bioprocessing. Genetic Engineering News. 2000;20(14):13. [Google Scholar]
  11. Gray D.R., Chen S., Howarth W., Inlow D., Majorella B.L. CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnology. 1996;22:65–78. doi: 10.1007/BF00353925. [DOI] [PubMed] [Google Scholar]
  12. Handa A., Emery A.N., Spier R.E. On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev Biol Standard. 1987;66:241–253. [PubMed] [Google Scholar]
  13. Jöbses I., Martens D., Tramper J. Lethal events during gas sparging in animal cell culture. Biotechnol Bioeng. 1990;37:484–490. doi: 10.1002/bit.260370510. [DOI] [PubMed] [Google Scholar]
  14. Kimura R., Miller W. Effects of elevated pCO2 and/ or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol Bioeng. 1996;52:152–160. doi: 10.1002/(SICI)1097-0290(19961005)52:1<152::AID-BIT15>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  15. Kioukia N., Nienow A.W., Al-Rubeai M., Emery A.N. Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and a comparison with hybridoma culture. Biotechnol Prog. 1996;12:779–785. doi: 10.1021/bp9600703. [DOI] [Google Scholar]
  16. Kunas K.T., Papoutsakis E.T. Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng. 1990;36:476–483. doi: 10.1002/bit.260360507. [DOI] [PubMed] [Google Scholar]
  17. Lehmann J., Vorlop J., Büntemayer H. Bubble-free reactors and their development for continuous culture with cell recycle. In: Spier R.E., Griffiths J.B., editors. Animal Cell Biotechnology. London, UK: Academic Press Ltd.; 1988. pp. 221–237. [Google Scholar]
  18. Leist C.H., Meyer H.P., Fiechter A. Potential and problems of animal cells in suspension culture. J Biotechnol. 1990;15:1–46. doi: 10.1016/0168-1656(90)90049-H. [DOI] [PubMed] [Google Scholar]
  19. McQueen A., Meilhoc E., Bailey J.E. Flow effectson the viability and lysis of suspended mammalian cells. Biotechnol Bioeng. 1987;32:1001–1014. doi: 10.1007/BF01026191. [DOI] [PubMed] [Google Scholar]
  20. Mitchell-Logean C., Murhammer D.W. Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol Prog. 1997;13:875–877. doi: 10.1021/bp970078s. [DOI] [Google Scholar]
  21. Morrow J.K. 2002. Economics of antibody production. Genetic Engineering News. Vol. 22, No. 7.
  22. Murhammer D.W., Goochee C.F. Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol Prog. 1990;6:391–397. doi: 10.1021/bp00005a012. [DOI] [PubMed] [Google Scholar]
  23. Nelson K.L. Industrial scale mammalian cell culture, part II: design and scale-up. Biopharm. 1988;1(3):34–41. [Google Scholar]
  24. Nienow A.W. On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem Eng Sci. 1997;52:2557–2565. doi: 10.1016/S0009-2509(97)00072-9. [DOI] [Google Scholar]
  25. Nienow A.W., Langheinrich C., Stevenson N.C., Emery A.N., Clayton T.M., Slater N.K.H. Homogenization and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnology. 1996;22:87–94. doi: 10.1007/BF00353927. [DOI] [PubMed] [Google Scholar]
  26. Ozturk S.S. Engineering challenges in high density cell culture systems. Cytotechnology. 1996;22:9–13. doi: 10.1007/BF00353919. [DOI] [PubMed] [Google Scholar]
  27. Pattison R.N., Swamy J., Mendenhall B., Hwang C., Frohlich B.T. Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog. 2000;16:769–774. doi: 10.1021/bp000089c. [DOI] [PubMed] [Google Scholar]
  28. Perry R.H. and Green D.W. 1997. Perry's Chemical Engineers' Handbook. 7th edn. McGraw-Hill, Sec. 18, pp 10.
  29. Qi H., Jovanoic G., Michaels J., Konstantinov K. The art and science of micro-sparging in high-density perfusion cultures of animal cells. In: Lindner-Olssen E., Chatzissavidou N., Lullau E., editors. Animal Cell Technology: From Target to Market. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001. pp. 412–415. [Google Scholar]
  30. Schoengerr I., Stapp T., Ryll T. A comparison of different methods to determine the end of exponential growth in CHO cell cultures for optimization of scale-up. Biotechnol Prog. 2000;16:815–821. doi: 10.1021/bp000074e. [DOI] [PubMed] [Google Scholar]
  31. Sen A., Kallos M.S., Behie L.A. Effects of hydrodynamics on cultures of mammalian neural stem cell aggregates in suspension bioreactors. Ind Eng Chem Res. 2001;40:5350–5357. doi: 10.1021/ie001107y. [DOI] [Google Scholar]
  32. Spokane R.B., Pitts G.E., Wu P., Cordonnier M.J. and Ordaz D. 1999. An optical sensor for the in situ monitoring of dissolved carbon dioxide in Microbial Fermentations (Abstract). American Chemical Society National Meeting, March 21–25. Biochemical Technology.
  33. Taticek R., Petersen S., Konstantinov K. and Naveh D. 1998. Effect of dissolved carbon dioxide and bicarbonate on mammalian cell metabolism and recombinant protein productivity in high-density perfusion culture. Presented at Cell Culture Engineering Conference VI, San Diego, CA, USA.
  34. Varley J., Birch J. Reactor design for large scale suspension animal cell culture. Cytotechnology. 1999;29:177–205. doi: 10.1023/A:1008008021481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vorlop J., Lehmann J. Oxygen transfer and carrier mixing in large scale membrane stirred cell culture reactors. In: Spier R.E., Griffiths J.B., Stephenne J., Crooy P.J., editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Svenoaks, UK: Butterworths; 1989. pp. 366–369. [Google Scholar]
  36. Woodside S.M., Bowen B.D., Piret J.M. Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology. 1998;28:163–175. doi: 10.1023/A:1008050202561. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES