Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2002 Nov;40(1-3):85–92. doi: 10.1023/A:1023970222898

Identification of ribosomal protein S3a as a candidate for a novel PI 3-kinase target in the nucleus

Norihisa Hamaguchi 1, Tsutomu Ohdaira 1, Azusa Shinohara 2, Akihiro Iwamatsu 2, Sayoko Ihara 1, Yasuhisa Fukui 1,
PMCID: PMC3449526  PMID: 19003108

Abstract

Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is an important lipid second messenger that mediates various cell responses. We have searched for the nuclear PIP3 binding proteins using PIP3 analogue beads. A 33 kD protein was detected in this method, which was identified as ribosomal protein S3a by the mass spectrometric analysis. The recombinant S3a protein bound specifically to PIP3. S3a localized not only in the cytosol but also in the nucleus. Interestingly, not cytosolic but nuclear S3a bound to PIP3, suggesting different roles of S3a in the cytosol and the nucleus.

Keywords: nucleus, phosphatidylinositol 3-kinase, phosphatidylinositol 3, 4, 5-trisphosphate, ribosomal protein S3a

Full Text

The Full Text of this article is available as a PDF (244.9 KB).

References

  1. Bavelloni A, Santi S, Sirri A, Riccio M, Faenza I, Zini N, Cecchi S, Ferri A, Auron P, Maraldi NM, Marmiroli S. Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J Cell Sci. 1999;112:631-640. doi: 10.1242/jcs.112.5.631. [DOI] [PubMed] [Google Scholar]
  2. Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett. 1998;441:480-484. doi: 10.1016/S0014-5793(98)01593-2. [DOI] [PubMed] [Google Scholar]
  3. Bertagnolo V, Neri LM, Marchisio M, Mischiati C, Capitani S. Phosphoinositide 3-kinase activity is essential for alltransretinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res. 1999;59:542-546. [PubMed] [Google Scholar]
  4. Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM. Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett. 2000;477:27-32. doi: 10.1016/S0014-5793(00)01758-0. [DOI] [PubMed] [Google Scholar]
  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA, Irvine RF. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J. 1987;248:765-770. doi: 10.1042/bj2480765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cocco L, Martelli AM, Barnabei O, Manzoli FA. Nuclear inositol lipid signaling. Adv Enzyme Regul. 2001;41:361-384. doi: 10.1016/s0065-2571(00)00017-0. [DOI] [PubMed] [Google Scholar]
  8. Cui K, Coutts M, Stahl J, Sytkowski AJ. Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis. J Biol Chem. 2000;275:7591-7596. doi: 10.1074/jbc.275.11.7591. [DOI] [PubMed] [Google Scholar]
  9. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231-241. doi: 10.1016/S0092-8674(00)80405-5. [DOI] [PubMed] [Google Scholar]
  10. Divecha N, Clarke JH, Roefs M, Halstead JR, D'santos C. Nuclear inositides: Inconsistent consistencies. Cell Mol Life Sci. 2000;57:379-393. doi: 10.1007/PL00000700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'santos CS, Clarke JH, Divecha N. Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. Biochim Biophys Acta. 1998;1436:201-232. doi: 10.1016/s0005-2760(98)00146-5. [DOI] [PubMed] [Google Scholar]
  12. Eves EM, Xiong W, Bellacosa A, Kennedy SG, Tsichlis PN, Rosner MR, Hay N. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Molec Cell Biol. 1998;18:2143-2152. doi: 10.1128/mcb.18.4.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukui Y, Ihara S, Nagata S. Downstream of phosphatidylinositol-3 kinase, a multifunctional signaling molecule, and its regulation in cell responses. J Biochem. 1998;124:1-7. doi: 10.1093/oxfordjournals.jbchem.a022067. [DOI] [PubMed] [Google Scholar]
  14. Iwamatsu A, Yoshida-Kubomura N. Systematic peptide fragmentation of polyvinylidene difluoride (PVDF)-immobilized proteins prior to microsequencing. J Biochem. 1996;120:29–34. doi: 10.1093/oxfordjournals.jbchem.a021389. [DOI] [PubMed] [Google Scholar]
  15. Kho CJ, Wang Y, Zarbl H. Effect of decreased fte-1 gene expression on protein synthesis, cell growth, and transformation. Cell Growth Diff. 1996;7:1157-1166. [PubMed] [Google Scholar]
  16. Kho CJ, Zarbl H. Fte-1, a v-fos transformation effector gene, encodes the mammalian homologue of a yeast gene involved in protein import into mitochondria. Proc Natl Acad Sci USA. 1992;89:2200-2204. doi: 10.1073/pnas.89.6.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lu PJ, Hsu AL, Wang DS, Yan HY, Yin HL, Chen CS. Phosphoinositide 3-kinase in rat liver nuclei. Biochemistry. 1998;37:5738-5745. doi: 10.1021/bi972551g. [DOI] [PubMed] [Google Scholar]
  18. Lutsch G, Stahl J, Kargel HJ, Noll F, Bielka H. Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver. Eur J Cell Biol. 1990;51:140-150. [PubMed] [Google Scholar]
  19. Martelli AM, Bortul R, Tabellini G, Aluigi M, Peruzzi D, Bareggi R, Narducci P, Cocco L. Re-examination of the mechanisms regulating nuclear inositol lipid metabolism. FEBS Lett. 2001;505:1-6. doi: 10.1016/S0014-5793(01)02752-1. [DOI] [PubMed] [Google Scholar]
  20. Mizushima S, Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990;18:5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T, Todokoro K. Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood. 1996;87:1309-1316. [PubMed] [Google Scholar]
  22. Naora H, Takai I, Adachi M, Naora H. Altered cellular responses by varying expression of a ribosomal protein gene: Sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol. 1998;141:741-753. doi: 10.1083/jcb.141.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neri LM, Capitani S, Borgatti P, Martelli AM. Lipid signaling and cell responses at the nuclear level. Histol Histopathol. 1999;14:321-335. doi: 10.14670/HH-14.321. [DOI] [PubMed] [Google Scholar]
  24. Neri LM, Martelli AM, Borgatti P, Colamussi ML, Marchisio M, Capitani S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGFtreated PC12 cells. Faseb J. 1999;13:2299-2310. [PubMed] [Google Scholar]
  25. Neri LM, Milani D, Bertolaso L, Stroscio M, Bertagnolo V, Capitani S. Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. Cell Mol Biol. 1994;40:619-626. [PubMed] [Google Scholar]
  26. Nygard O, Nilsson L, Westermann P. Characterisation of the ribosomal binding site for eukaryotic elongation factor 2 by chemical cross-linking. Biochim Biophys Acta. 1987;910:245-253. doi: 10.1016/0167-4781(87)90117-5. [DOI] [PubMed] [Google Scholar]
  27. Nygard O, Westermann P, Hultin T. Identification of neighbouring components in the quaternary eukaryotic protein synthesis initiation complex, eIF-2.GTP.Met-tRNAf.small ribosomal subunit. Acta Chem Scand B. 1981;35:57-59. doi: 10.3891/acta.chem.scand.35b-0057. [DOI] [PubMed] [Google Scholar]
  28. Russell L, Naora H, Naora H. Down-regulated RPS3a/nbl expression during retinoid-induced differentiation of HL-60 cells: A close association with diminished susceptibility to actinomycin D-stimulated apoptosis. Cell Struct Funct. 2000;25:103-113. doi: 10.1247/csf.25.103. [DOI] [PubMed] [Google Scholar]
  29. Shirai T, Tanaka K, Terada Y, Sawasa T, Shirai R, Hashimoto Y, Nagata S, Iwamatsu A, Okawa K, Li S, Hattori S, Mano H, Fukui Y. Specific detection of Phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads: An application for rapid purification of the PIP3 binding proteins. Biochim Biophys Acta. 1998;1402:292-302. doi: 10.1016/s0167-4889(98)00014-7. [DOI] [PubMed] [Google Scholar]
  30. Song D, Sakamoto S, Taniguchi T. Inhibition of poly(ADP-ribose) polymerase activity by Bcl-2 in association with the ribosomal protein S3a. Biochemistry. 2002;41:929-934. doi: 10.1021/bi015669c. [DOI] [PubMed] [Google Scholar]
  31. Stahl J, Kobets ND. Affinity labeling of proteins at the mRNA binding site of rat liver ribosomes by an analogue of octauridylate containing an alkylating group attached to the 3′-end. FEBS Lett. 1981;123:269-272. doi: 10.1016/0014-5793(81)80305-5. [DOI] [PubMed] [Google Scholar]
  32. Svobada AJ, McConkey EH. Crosslinking of proteins to ribosomal RNA in HeLa cell polysomes by sodium periodate. Biochem Biophys Res Commun. 1978;81:1145-1152. doi: 10.1016/0006-291x(78)91256-1. [DOI] [PubMed] [Google Scholar]
  33. Tanaka K. K., Horiguchi K, Yoshida T, Takeda M, Fujisawa H, Takeuchi K, Umeda M, Kato S, Ihara S, Nagata S, Fukui Y. Evidence that a phosphatidylinositol 3,4,5-trisphosphate binding protein can function in nucleus. J Biol Chem. 1999;274:3919-3922. doi: 10.1074/jbc.274.7.3919. [DOI] [PubMed] [Google Scholar]
  34. Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997;387:673-676. doi: 10.1038/42648. [DOI] [PubMed] [Google Scholar]
  35. Tolan DR, Traut RR. Protein topography of the 40 S ribosomal subunit from rabbit reticulocytes shown by crosslinking with 2-iminothiolane. J Biol Chem. 1981;256:10129-10136. [PubMed] [Google Scholar]
  36. Vavhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535-602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
  37. Westermann P, Heumann W, Bommer UA, Bielka H, Nygard O, Hultin T. Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Lett. 1979;97:101-104. doi: 10.1016/0014-5793(79)80061-7. [DOI] [PubMed] [Google Scholar]
  38. Westermann P, Nygard O. The spatial arrangement of the complex between eukaryotic initiation factor eIF-3 and 40 S ribosomal subunit. Cross-linking between factor and ribosomal proteins. Biochim Biophys Acta. 1983;741:103-108. doi: 10.1016/0167-4781(83)90015-5. [DOI] [PubMed] [Google Scholar]
  39. Westermann P, Nygard O, Bielka H. Cross-linking of Met-tRNAf to eIF-2 beta and to the ribosomal proteins S3a and S6 within the eukaryotic inhibition complex, eIF-2. GMPPCP.Met-tRNAf.small ribosomal subunit. Nucleic Acids Res. 1981;9:2387-2396. doi: 10.1093/nar/9.10.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yokogawa T, Nagata S, Nishio Y, Tsutsumi T, Ihara S, Shirai R, Morita K, Umeda M, Shirai Y, Saitoh N, Fukui Y. Evidence that 3_-phosphorylated polyphosphoinositides are generated at the nuclear surface: Use of immunostaining technique with monoclonal antibodies specific for PI 3,4–P(2) FEBS Lett. 2000;473:222-226. doi: 10.1016/S0014-5793(00)01535-0. [DOI] [PubMed] [Google Scholar]
  41. Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level [In Process Citation] J Cell Biol. 2000;151:483-494. doi: 10.1083/jcb.151.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zini N, Ognibene A, Bavelloni A, Santi S, Sabatelli P, Baldini N, Scotlandi K, Serra M, Maraldi NM. Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol. 1996;106:457-464. doi: 10.1007/BF02473307. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES