Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2002 Nov;40(1-3):125. doi: 10.1023/A:1023984304610

Suppression of UVC-induced cell damage and enhancement of DNA repair by the fermented milk, Kefir

Tsutomu Nagira 1, Junko Narisawa 1, Kiichirou Teruya 1, Yoshinori Katakura 1, Sun-Yup Shim 1, Ken-ichi Kusumoto 2, Sennosuke Tokumaru 3, Koichiro Tokumaru 3, David W Barnes 2, Sanetaka Shirahata 1,
PMCID: PMC3449527  PMID: 19003113

Abstract

An aqueous extract of Kefir, fermented milk originally produced in the Caucasus mountains, suppressed morphological changes of human melanoma HMV-1 and SK-MEL cells and human normal fibroblastTIG-1 cells caused by UVC-irradiation, suggesting that UV damage can be suppressed by the Kefir extract. The addition of the Kefir extract after UVC-irradiation of HVM-1 cells resulted in a remarkable decrease in intracellular reactive oxygen species (ROS) which had been increased by UVC irradiation. The Kefir extract also stimulated unscheduled DNA synthesis and suppressed UVC-induced apoptosis of HMV-1 cells. A colony formation assay revealed that the Kefir extract rescued HMV-1 cells from cell death caused by UVC irradiation. The Kefir extract, as well as methyl methanethiosulfonate which is known to enhance the nucleotide excision repair (NER) activity, exhibited strong thymine dimer repair-enhancing activity. Epigalocatechin exhibited a weak NER activity but vitamins A, C, and E and catechin showed no NER activity. The thymine dimer repair-enhancing factors in the Kefir extract were heat-stable and assumed to be molecules with a molecular weight of less than 5000. The treatment of HMV-1 cells with the Kefir extract during or before UVC- irradiation also prevented the generation of ROS and thymine dimmer, and suppressed the apoptosis of HMV-1 cells, suggesting that application of Kefir can prevent UV damage.

Keywords: apoptosis, DNA repair, Kefir, reactive oxygen species (ROS), thymine dimer, unscheduled DNA synthesis (UDS), UV damage

Full Text

The Full Text of this article is available as a PDF (308.6 KB).

Footnotes

An erratum to this article can be found at http://dx.doi.org/10.1007/s10616-011-9410-5

An erratum to this article is available at http://dx.doi.org/10.1007/s10616-011-9410-5.

References

  1. Amundson SA, Myers TG, Fornace AJ. Roles for p53 in growth arrest and apoptosis: Putting on the brakes after genotoxic stress. Oncogene. 1998;17:3271–3276. doi: 10.1038/sj.onc.1202136. [DOI] [PubMed] [Google Scholar]
  2. Anna T, Jeno M, Matyas GJ. Monitoring of benzeneexposed workers for genotoxic effects of benzene:improvedworking-condition-related decrease in the frequencies of chromosomal aberrations in peripheral blood. Mutat Res. 1994;304:159–165. doi: 10.1016/0027-5107(94)90207-0. [DOI] [PubMed] [Google Scholar]
  3. Blume G, Teichmueller EE. Liposomes with anti-oxidants and their protective efficacy against UV-irradiation. SOFW J. 1999;125:12–14. [Google Scholar]
  4. Ceaver JE, Afzal V, Feeney L, McDowell M, Sadinski W, Volpe JPG, Bush DB, Coleman DM, Ziffer DW, Yu Y, Nagasawa H, Little JB. Increased ultraviolet sensitivity and chromosomal instability related to p53 function in xeroderma pigmentosum variant. Cancer Res. 1999;59:1102–1108. [PubMed] [Google Scholar]
  5. Chang L-C, Sheu H-M, Huang Y-S, Tsai T-R, Kuo K-W. A novel function of emodin: Enhancement of the nucleotide excision repair of UV-and cisplatin-induced DNA damage in human cells. Biochem Pharmacol. 1999;58:49–57. doi: 10.1016/S0006-2952(99)00075-1. [DOI] [PubMed] [Google Scholar]
  6. Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci. 2002;7:D1024–D1043. doi: 10.2741/cleaver. [DOI] [PubMed] [Google Scholar]
  7. Dell'Orco RT, Anderson LE. Unscheduled DNA synthesis in human diploid cells of different donor ages. Cell Biol Int Rep. 1981;5:359–364. doi: 10.1016/0309-1651(81)90005-9. [DOI] [PubMed] [Google Scholar]
  8. Dobson AW, Xu Y, Kelly MR, LeDoux SP, Willson GL. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 2000;275:37518–37523. doi: 10.1074/jbc.M000831200. [DOI] [PubMed] [Google Scholar]
  9. Fu YC, Jin XP, Wei SM, Lin HF, Kacew S. Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: Protective role of tea polyphenols. J Toxicol Environ Health Part A. 2000;61:177–188. doi: 10.1080/00984100050131323. [DOI] [PubMed] [Google Scholar]
  10. Garcia MXU, Foote C, Van Es S, Devreotes PN, Alexander S, Alexander H. Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. Biochim Biophys Acta-Gene Struct Expres. 2000;1492:295–310. doi: 10.1016/S0167-4781(00)00063-4. [DOI] [PubMed] [Google Scholar]
  11. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heo MY, Kim SH, Yang HE, Lee SH, Jo BK, Kim HP. Protection against ultraviolet B-and C-induced DNA damage and skin carcinogenesis by the flowers of Prunus persica extract. Mutat Res – Genet Toxicol Environ Mutagen. 2001;496SI:47–59. doi: 10.1016/S1383-5718(01)00218-2. [DOI] [PubMed] [Google Scholar]
  13. Kabayama S, Osada K, Tachibana H, Katakura Y, Shirahata S. Enhancing effects of food components on the production of interferon beta from animal cells suppressed by stress hormones. Cytotechnology. 1997;23:119–125. doi: 10.1023/A:1007971906061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kada T, Shimoi K. Desmutagens and bio-antimutagens – Their modes of action. Bioessays. 1987;7:113–116. doi: 10.1002/bies.950070305. [DOI] [PubMed] [Google Scholar]
  15. Kasten U, Beyersmann D, Dahm-Daphi J, Hartwig A. Sensitive nonradioactive detection of UV-induced cyclobutane pyrimidine dimers in intact mammalian cells. Mutat Res. 1995;336:143–152. doi: 10.1016/0921-8777(94)00052-8. [DOI] [PubMed] [Google Scholar]
  16. Kasten U, Mullenders LH, Hartwig A. Cobat(II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. Mutat Res. 1997;383:81–89. doi: 10.1016/s0921-8777(96)00052-3. [DOI] [PubMed] [Google Scholar]
  17. Koji T, Nakane PK. Localization in situ of specific mRNA using thymine-thymine dimerized DNA probes. Sensitive and reliable non-radioactive in situ hybridization. Acta Pathol JPN. 1990;40:783–807. doi: 10.1111/j.1440-1827.1990.tb02492.x. [DOI] [PubMed] [Google Scholar]
  18. Kubo M, Odani T, Nakamura S, Tokumaru S, Matsuda H. Pharmacological study on Kefir – A fermented milk product in Caucasus. I. On antitumor activity (1) Yakugaku Zasshi. 1992;112:489–495. doi: 10.1248/yakushi1947.112.7_489. [DOI] [PubMed] [Google Scholar]
  19. Kubow S and Fotouhinia M (2001) Kefir as a potent antioxidant composition. PCT Int Appl (pp. 15), Coden: PIXXD2 WO 0197820 A2 20011227.
  20. Matsuo T, Hanamure N, Shimoi K, Nakamura Y, Tomita I. Identification of (+)-gallocatechin as a bio-antimutagenic compound in Psidium guava leaves. Phytochem. 1994;36:1027–1029. doi: 10.1016/S0031-9422(00)90484-9. [DOI] [PubMed] [Google Scholar]
  21. Matsuu M, Shichijo K, Wen C-Y, Nakashima M, Ito M, Shirahata S, Tokumaru S, Sekine I. The protective effect of fermented milk Kefir on acute radiation injury in rat colon. Ulcer Res. 2001;28:147–149. [Google Scholar]
  22. Mitra S, Boldogh I, Izumi T, Hazra TK. Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen. 2001;38:180–190. doi: 10.1002/em.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murofushi M, Mizuguchi J, Aibara K, Matuhashi T. Immunopotentiative effect of polysaccharide from Kefir grain, KGF-C, administered orally in mice. Immunopharmacol. 1986;12:29–35. doi: 10.1016/0162-3109(86)90049-4. [DOI] [PubMed] [Google Scholar]
  24. Nakamura YK, Kawai K, Furukawa H, Matsuo T, Shimoi K, Tomita I, Nakamura Y. Suppressing effects of S-methyl methanethiosulfonate and diphenyl disulfide on mitomycin Cinduced somatic mutation and recombination in Drosophila melanogaster and micronuclei in mice. Mut Res. 1997;385:41–46. doi: 10.1016/s0921-8777(97)00033-5. [DOI] [PubMed] [Google Scholar]
  25. Nakamura YK, Matsuo T, Shimoi K, Nakamura Y, Tomita I. S-methyl methanethiosulfonate, bio-antimutagen in homogenates of Cruciferae and Liliaceae vegetables. Biosci Biotechnol Biochem. 1996;60:1439–1443. doi: 10.1271/bbb.60.1439. [DOI] [PubMed] [Google Scholar]
  26. Nakamura Y, Nakamura YK, Tashiro S, Mukai K, Matsuo T, Tomita I. Modification of enzyme sulfhydryl groups suppresses UV-induced mutagenesis depending on the nucleotide excision repair system in Escherichia coli B/rWP2. Mutat Res. 1998;407:47–53. doi: 10.1016/s0921-8777(97)00060-8. [DOI] [PubMed] [Google Scholar]
  27. Nyaga SG, Lloyd RS. Two glycosylase/abasic lyases from Neisseria mucosa that initiate DNA repair at sites of UV-induced photoproducts. J Biol Chem. 2000;275:23569–23576. doi: 10.1074/jbc.M000628200. [DOI] [PubMed] [Google Scholar]
  28. Osada K, Nagira K, Teruya K, Tachibana H, Shirahata S, Murakami H. Enhancement of interferon-β production with sphingomyelin from fermented milk. Biotherapy. 1993;7:115–123. doi: 10.1007/BF01877735. [DOI] [PubMed] [Google Scholar]
  29. Perdiz D, Grof P, Mezzina M, Nikaido O, Moustacchi E, Sage E. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells – Possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem. 2000;275:26732–26742. doi: 10.1074/jbc.M001450200. [DOI] [PubMed] [Google Scholar]
  30. Petitfrere C, Clingen PH, Arlett CF, Green MHL. Inhibition of RNA and DNA synthesis in UV-irradiated normal human fibroblasts is correlated with pyrimidine (6–4) pyrimidone photopruduct formation. Mut Res – Fund Mol Mech Mutagen. 1996;354:87–94. doi: 10.1016/0027-5107(96)00042-5. [DOI] [PubMed] [Google Scholar]
  31. Pool-Zobel BL, Munzer R, Holzapfel WH. Antigenotoxic properties of lactic acid bacteria in the S. typhimurium mutagenicityassay. Nutr Cancer. 1993;20:261–270. doi: 10.1080/01635589309514294. [DOI] [PubMed] [Google Scholar]
  32. Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B – Biol. 2001;63:88–102. doi: 10.1016/S1011-1344(01)00206-8. [DOI] [PubMed] [Google Scholar]
  33. Razzaque MS, Koji T, Kawano H, Harada T, Nakane PK, Taguchi T. Glomerular expression of type III and type IV collagens in benign nephrosclerosis: Immunohistochemical and in situ hybridization study. Pathol Res Pract. 1994;190:493–499. doi: 10.1016/s0344-0338(11)80212-8. [DOI] [PubMed] [Google Scholar]
  34. Rhodes CJ, Dintinger TC, Moynihan HA, Reid ID. Radiolabelling studies of free radical reactions using muonium (the second hydrogen radioisotope): Evidence of a direct antioxidant role for vitamin K in repair of oxidative damage to lipids. Mag Res Chem. 2000;38:646–649. doi: 10.1002/1097-458X(200008)38:8<646::AID-MRC699>3.0.CO;2-W. [DOI] [Google Scholar]
  35. Sancar A. DNA excision repair. Ann Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  36. Shen HM, Shi CY, Shen Y, Ong CN. Detection of elevated reactive oxygen speies level in cultured rat hepatocytes treated with aflatoxin B1. Free Radical Biol and Med. 1996;21:139–146. doi: 10.1016/0891-5849(96)00019-6. [DOI] [PubMed] [Google Scholar]
  37. Shiomi M, Sasaki K, Murofushi M, Aibara K. Antitumor activity in mice of orally administered polysaccharide from Kefir grain. Jap J Med Sci Biol. 1982;35:75–80. doi: 10.7883/yoken1952.35.75. [DOI] [PubMed] [Google Scholar]
  38. Shimoi K, Nakamura Y, Taomita I, Hara Y, Kada T. The pyrogallol related compounds reduce UV-induced mutations in Escherichia coli B/r WP2. Mutat Res. 1986;173:239–244. doi: 10.1016/0165-7992(86)90017-5. [DOI] [PubMed] [Google Scholar]
  39. Teruya K, Yamashita M, Tominaga R, Nagira T, Katakura Y, Tokumaru S, Barnes D, Shirahata S. Fermented milk Kefram-Kefir enhances glucose uptake into insulin-responsive cells. Cytochnology. 2002;40:107–116. doi: 10.1023/A:1023926407877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thoreux K, Schmucker DL. Kefir milk enhances intestinal immunity in young but not old rats. J Nut. 2001;131:807–812. doi: 10.1093/jn/131.3.807. [DOI] [PubMed] [Google Scholar]
  41. Venema J, Van Hoffen A, Karcagi V, Natarajan AT, Van Zeeland AA, Mullenders LH. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol. 1991;11:4128–34. doi: 10.1128/mcb.11.8.4128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vervoort LMT, Ronden JE, Thissen HHW. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharm. 1997;54:871–876. doi: 10.1016/S0006-2952(97)00254-2. [DOI] [PubMed] [Google Scholar]
  43. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species; role in inflammatory disease and progression to cancer. Biochem J. 1996;313:17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. You YH, Lee DH, Yoon JH, Nakajima S, Yasui A, Pfeifer GP. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Biol Chem. 2001;276:44688–44694. doi: 10.1074/jbc.M107696200. [DOI] [PubMed] [Google Scholar]
  45. Zubillaga M, Weill R, Postaire E, Goldman C, Caro R, Boccio J. Effect of probiotics and functional foods and their use in different diseases. Nut Res. 2001;21:569–579. doi: 10.1016/S0271-5317(01)00281-0. [DOI] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES