Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 Nov;31(3):255–263. doi: 10.1023/A:1008061424281

Differential patterns of expression of glycosylphosphatidylinositol-anchored carcinoembryonic antigen and alkaline phosphatase in various cancer cell lines

Kaoru Yoshinari 1,, Kunio Matsumoto 2, Hideo Misaki 1
PMCID: PMC3449541  PMID: 19003149

Abstract

The expression of glycosylphosphatidylinositol (GPI-anchored) carcinoembryonic antigen (CEA) and alkaline phosphatase (ALP) on the cell surface of various cancer cell lines and a lung diploid cell line (WI38) was investigated, with exposure of the cell lines to a cell differentiation agent (sodium butyrate) to induce cell differentiation and expression of the two tumor-associated antigens. In three colon (SW1222, SW1116, and HT-29) and stomach (MKN-45) cancer cell lines, all of which are double producers of CEA and ALP, the maximum expression of GPI-anchored CEA occurred with butyrate at a lower concentration than did that of GPI-anchored ALP. GPI-anchored ALP derived from colon (SW1222 and SW1116) and stomach (MKN-45 and MKN-1) cancer cell lines was heat-stable with and without exposure to butyrate, but GPI-anchored ALP derived from lung cancer cell lines (PC-6, PC13, PC-14, WI26VA4, and WI38VA13) showed a variety of heat stabilities, depending on cell line, butyrate exposure, and SV40 transformation.

Keywords: alkaline phophatase, cancer cell line, carcinoembryonic antigen, glycosylphosphatidylinositol, sodium butyrate, tumor-associated antigen

Full Text

The Full Text of this article is available as a PDF (133.5 KB).

References

  1. Abe M, Kufe DW. Effect of sodium butyrate on human breast carcinoma (MCF-7) cellular proliferation, morphology, and CEA production. Breast Cancer Res Treat. 1984;4:269–274. doi: 10.1007/BF01806038. [DOI] [PubMed] [Google Scholar]
  2. Akiyama S, Amo H, Watanabe T, Matuyama M, Sakamoto J, Imaizumi H, Kondo T, Takagi H. Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J Surg. 1988;18:438–446. doi: 10.1007/BF02471470. [DOI] [PubMed] [Google Scholar]
  3. Chung YS, Song IS, Erickson RH, Sleisenger MH, Kim YS. Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 1985;45:2976–2982. [PubMed] [Google Scholar]
  4. Ferguson MAJ, Williams AF. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  5. Fishman WH. Oncodevelopmental markers; Biologic, Diagnostic, and Monitoring Aspects. New York: Academic Press, Inc.; 1983. Oncodevelopmental markers; pp. 3–19. [Google Scholar]
  6. Fishman WH, Inglis NR, Green S, Anstiss CL, Ghosh NK, Reif AE, Rustigan R, Krant MJ, Stolbach LL. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature (Lond.) 1968;219:697–699. doi: 10.1038/219697a0. [DOI] [PubMed] [Google Scholar]
  7. Fleming H, Begley M, Campi T, Condon R, Dobyns K, McDonagh J, Wallace S. Induction of heat labile alkaline phosphatase by butyrate in differentiating endometrial cells. J Cell Biochem. 1995;58:509–516. doi: 10.1002/jcb.240580414. [DOI] [PubMed] [Google Scholar]
  8. Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinoma by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–462. doi: 10.1084/jem.121.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gold P, Freedman SO. Specific carcinoembryonicantigens of the human digestive system. J Exp Med. 1965;122:467–481. doi: 10.1084/jem.122.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gum JR, Kam WK, Byrd JC, Hicks JW, Sleisenger MH, Kim YS. Effects of sodium butyrate on human colonic adenocarcinoma cells. J Biol Chem. 1987;262:1092–1097. [PubMed] [Google Scholar]
  11. Hodin RA, Meng S, Archer S, Tang R. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ. 1996;7:647–653. [PubMed] [Google Scholar]
  12. Howard AD, Berger J, Gerber L, Familletti P, Udenfriend S. Characterization of the phophatidylinositol-glycan membrane anchor of human alkaline phophatase. Proc Natl Acad Sci USA. 1987;84:6055–6059. doi: 10.1073/pnas.84.17.6055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knaup G, Pfleiderer G, Bayreuther K. Human diploid lung fibroblast cell lines WI-26 and WI38 exhibit isozyme shift of alkaline phosphatase after viral transformation. Clin Chim Acta. 1978;88:375–383. doi: 10.1016/0009-8981(78)90444-8. [DOI] [PubMed] [Google Scholar]
  14. Kominami T, Miki A, Ikehara Y. Electrophoretic characterization of hepatic alkaline phosphates released by phosphatidylinositol-specific phospholipase C. Biochem J. 1985;227:183–189. doi: 10.1042/bj2270183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leibovitz A, Stinson JC, McCombs WB, III, McCoy CE, Mazur KC, Marby ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976;36:4562–4569. [PubMed] [Google Scholar]
  16. Low MG. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989;988:427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
  17. Low MG, Saltiel AR. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988;239:268–274. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  18. Low MG, Zilversmit DB. Role of phosphatidylinositol in attachment of alkaline phosphates to membranes. Biochemistry. 1980;19:3913–3918. doi: 10.1021/bi00558a004. [DOI] [PubMed] [Google Scholar]
  19. Malik AS, Low MG. Conversion of human placental alkaline phophatase from a high Mr form to a low Mr form during butanol extraction. Biochem J. 1986;240:519–527. doi: 10.1042/bj2400519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McComb RB, Bowers GN, Jr, Posen S. Alkaline phosphatase. New York: Plenum Publishing Corp.; 1979. [Google Scholar]
  21. Miki A, Kominami T, Ikehara Y. pH-dependent conversion of liver-membranous alkaline phosphatase to a serum-soluble from by n-butanol extraction. Biochem Biophys Res Commun. 1985;126:89–95. doi: 10.1016/0006-291X(85)90575-3. [DOI] [PubMed] [Google Scholar]
  22. Nakayama T, Yoshida M, Kitamura M. L-Leucine sensitive, heat-stable alkaline phosphates isoenzyme detected in a patient with pleuritis caricinomatosa. Clin Chim Acta. 1970;30:546–548. doi: 10.1016/0009-8981(70)90152-X. [DOI] [PubMed] [Google Scholar]
  23. Niles RM, Wilhelm SA, Thomas P, Zamcheck N. The effect of sodium butyrate and retinoic acid on growth and CEA production in a series of human colorectal tumor cell lines representing different states of differentiation. Cancer Invest. 1988;6:39–45. doi: 10.3109/07357908809077027. [DOI] [PubMed] [Google Scholar]
  24. Oikawa S, Nakazato H, Kosaki G. Primary structure of human carcino-embryonic antigen (CEA) deduced from cDNA sequence. Biochem Biophys Res Commun. 1987;142:511–518. doi: 10.1016/0006-291X(87)90304-4. [DOI] [PubMed] [Google Scholar]
  25. Pignatelli M, Durbin H, Bodmer WF. Carcinoembryonic antigen functions as an accessory adhesion molecule mediating colon epithelial cell-collagen interactions. Proc Natl Acad Sci USA. 1990;87:1541–1545. doi: 10.1073/pnas.87.4.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Riggs MG, Whittaker RG, Neumann JR, Ingram VM. n-butyrate causes histone modification in HeLa and Friend erythroleukemia cells. Nature. 1977;268:462–464. doi: 10.1038/268462a0. [DOI] [PubMed] [Google Scholar]
  27. Saini K, Steele G, Thomas P. Induction of carcinoembryonic-antigen-gene expression in human colorectal carcinoma by sodium butyrate. Biochem J. 1990;272:541–544. doi: 10.1042/bj2720541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell. 1978;14:115–121. doi: 10.1016/0092-8674(78)90306-9. [DOI] [PubMed] [Google Scholar]
  29. Takami N, Misumi Y, Kuroki M, Matsuoka Y, Ikehara Y. Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen. J Biol Chem. 1988;263:12716–12720. [PubMed] [Google Scholar]
  30. Toribara NW, Sack TL, Gum JR, Ho SB, Shively JE, Willson JKV, Kim YS. Heterogeneity in the induction and expression of carcinoembryonic antigen-related antigens in human colon cancer cell lines. Cancer Res. 1989;49:3321–3327. [PubMed] [Google Scholar]
  31. Tsao D, Shi Z, Wong A, Kim YS. Effect of sodium butyrate on carcinoembryonic antigen production by human colonic adenocarcinoma cells in culture. Cancer Res. 1983;43:1217–1222. [PubMed] [Google Scholar]
  32. Velcich A, Palumbo L, Jarry A, Laboisse C, Racevskis J, Augenlicht L. Patterns of expression of lineage-specific markers during in vitro induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ. 1995;6:749–757. [PubMed] [Google Scholar]
  33. Vidali G, Boffa LC, Bradbury EM, Allfrey VB. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA. Proc Natl Acad Sci USA. 1978;75:2239–2243. doi: 10.1073/pnas.75.5.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES