Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Feb;81(3):940–944. doi: 10.1073/pnas.81.3.940

The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.

W K Stell, S E Walker, K S Chohan, A K Ball
PMCID: PMC344955  PMID: 6199789

Abstract

Antisera to two putative neurotransmitters, luteinizing hormone-releasing hormone (LHRH) and molluscan cardioexcitatory tetrapeptide (H-Phe-Met-Arg-Phe-NH2; FMRF-amide), bind specifically to neurites in the inner nuclear and inner plexiform layers of the goldfish retina. Retrograde labeling showed that intraocular axon terminals originate from the nervus terminalis, whose cell bodies are located in the olfactory nerves. Double immunocytochemical and retrograde labeling showed that some terminalis neurons project to the retina; others may project only within the brain. All terminalis neurons having proven retinal projections were both LHRH- and FMRF-amide-immunoreactive. The activity of retinal ganglion cells was recorded with microelectrodes in isolated superfused goldfish retinas. In ON- and OFF-center double-color-opponent cells, micromolar FMRF-amide and salmon brain gonadotropin-releasing factor ( [Trp7, Leu8] LHRH) caused increased spontaneous activity in the dark, loss of light-induced inhibition, and increased incidence of light-entrained pulsatile response. The nervus terminalis is therefore a putatively peptidergic retinopetal projection. Sex-related olfactory stimuli may act through it, thereby modulating the output of ganglion cells responsive to color contrast.

Full text

PDF
940

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belgum J. H., Dvorak D. R., McReynolds J. S. Sustained synaptic input to ganglion cells of mudpuppy retina. J Physiol. 1982 May;326:91–108. doi: 10.1113/jphysiol.1982.sp014179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boer H. H., Schot L. P., Veenstra J. A., Reichelt D. Immunocytochemical identification of neural elements in the central nervous systems of a snail, some insects, a fish, and a mammal with an antiserum to the molluscan cardio-excitatory tetrapeptide FMRF-amide. Cell Tissue Res. 1980;213(1):21–27. doi: 10.1007/BF00236917. [DOI] [PubMed] [Google Scholar]
  3. COONS A. H. Fluorescent antibody methods. Gen Cytochem Methods. 1958;1:399–422. [PubMed] [Google Scholar]
  4. Chan R. Y., Naka K. The amacrine cell. Vision Res. 1976;16(10):1119–1129. doi: 10.1016/0042-6989(76)90252-2. [DOI] [PubMed] [Google Scholar]
  5. Crim L. W., Evans D. M., Coy D. H., Schally A. v. Control of gonadotrophic hormone release in trout: influence of synthetic LH-RH and LH-RH analogues in vivo and in vitro. Life Sci. 1981 Jan 12;28(2):129–135. doi: 10.1016/0024-3205(81)90544-0. [DOI] [PubMed] [Google Scholar]
  6. Daw N. W. Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol. 1968 Aug;197(3):567–592. doi: 10.1113/jphysiol.1968.sp008575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demski L. S., Northcutt R. G. The terminal nerve: a new chemosensory system in vertebrates? Science. 1983 Apr 22;220(4595):435–437. doi: 10.1126/science.6836287. [DOI] [PubMed] [Google Scholar]
  8. Djamgoz M. B., Stell W. K., Chin C. A., Lam D. M. An opiate system in the goldfish retina. Nature. 1981 Aug 13;292(5824):620–623. doi: 10.1038/292620a0. [DOI] [PubMed] [Google Scholar]
  9. Dockray G. J., Vaillant C., Williams R. G. New vertebrate brain--gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature. 1981 Oct 22;293(5834):656–657. doi: 10.1038/293656a0. [DOI] [PubMed] [Google Scholar]
  10. Dockray G. J., Williams R. G. FMRFamide-like immunoreactivity in rat brain: development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Res. 1983 May 5;266(2):295–303. doi: 10.1016/0006-8993(83)90661-3. [DOI] [PubMed] [Google Scholar]
  11. Ebbesson S. O., Meyer D. L. Efferents to the retina have multiple sources in teleost fish. Science. 1981 Nov 20;214(4523):924–926. doi: 10.1126/science.6171033. [DOI] [PubMed] [Google Scholar]
  12. Erchegyi J., Coy D. H., Nekola M. V., Coy E. J., Schally A. V., Mezo I., Teplan I. Luteinizing hormone-releasing hormone analogs with increased anti-ovulatory activity. Biochem Biophys Res Commun. 1981 Jun 16;100(3):915–920. doi: 10.1016/0006-291x(81)91910-0. [DOI] [PubMed] [Google Scholar]
  13. Erichsen J. T., Reiner A., Karten H. J. Co-occurrence of substance P-like and Leu-enkephalin-like immunoreactivities in neurones and fibres of avian nervous system. Nature. 1982 Feb 4;295(5848):407–410. doi: 10.1038/295407a0. [DOI] [PubMed] [Google Scholar]
  14. Finger T. E. The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. J Comp Neurol. 1975 May 1;161(1):125–141. doi: 10.1002/cne.901610110. [DOI] [PubMed] [Google Scholar]
  15. Gayton R. J. Mammalian neuronal actions of FMRFamide and the structurally related opioid Met-enkephalin-Arg6-Phe7. Nature. 1982 Jul 15;298(5871):275–276. doi: 10.1038/298275a0. [DOI] [PubMed] [Google Scholar]
  16. Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
  17. Hartman B. K. Immunofluorescence of dopamine- -hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J Histochem Cytochem. 1973 Apr;21(4):312–332. doi: 10.1177/21.4.312. [DOI] [PubMed] [Google Scholar]
  18. Hökfelt T., Fuxe K., Goldstein M. Applications of immunohistochemistry to studies on monoamine cell systems with special reference to nervous tissues. Ann N Y Acad Sci. 1975 Jun 30;254:407–432. doi: 10.1111/j.1749-6632.1975.tb29192.x. [DOI] [PubMed] [Google Scholar]
  19. Hökfelt T., Johansson O., Ljungdahl A., Lundberg J. M., Schultzberg M. Peptidergic neurones. Nature. 1980 Apr 10;284(5756):515–521. doi: 10.1038/284515a0. [DOI] [PubMed] [Google Scholar]
  20. Hökfelt T., Lundberg J. M., Schultzberg M., Johansson O., Skirboll L., Anggård A., Fredholm B., Hamberger B., Pernow B., Rehfeld J. Cellular localization of peptides in neural structures. Proc R Soc Lond B Biol Sci. 1980 Oct 29;210(1178):63–77. doi: 10.1098/rspb.1980.0119. [DOI] [PubMed] [Google Scholar]
  21. Ishida A. T., Fain G. L. D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5890–5894. doi: 10.1073/pnas.78.9.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iversen L. L. Nonopioid neuropeptides in mammalian CNS. Annu Rev Pharmacol Toxicol. 1983;23:1–27. doi: 10.1146/annurev.pa.23.040183.000245. [DOI] [PubMed] [Google Scholar]
  23. Jan Y. N., Jan L. Y., Kuffler S. W. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1501–1505. doi: 10.1073/pnas.76.3.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kim Y. S., Stumpf W. E., Sar M. Topography of estrogen target cells in the forebrain of goldfish, Carassius auratus. J Comp Neurol. 1978 Dec 15;182(4):611–620. doi: 10.1002/cne.901820404. [DOI] [PubMed] [Google Scholar]
  25. Kock J. H., Reuter T. Retinal ganglion cells in the crucian carp (Carassius carassius). II. Overlap, shape and tangential orientation of dendritic trees. J Comp Neurol. 1978 Jun 1;179(3):549–567. doi: 10.1002/cne.901790307. [DOI] [PubMed] [Google Scholar]
  26. Kuypers H. G., Bentivoglio M., Catsman-Berrevoets C. E., Bharos A. T. Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res. 1980;40(4):383–392. doi: 10.1007/BF00236147. [DOI] [PubMed] [Google Scholar]
  27. Marc R. E., Lam D. M. Glycinergic pathways in the goldfish retina. J Neurosci. 1981 Feb;1(2):152–165. doi: 10.1523/JNEUROSCI.01-02-00152.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Münz H., Claas B., Stumpf W. E., Jennes L. Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Res. 1982;222(2):313–323. doi: 10.1007/BF00213215. [DOI] [PubMed] [Google Scholar]
  29. Münz H., Stumpf W. E., Jennes L. LHRH systems in brain of platyfish. Brain Res. 1981 Sep 21;221(1):1–13. doi: 10.1016/0006-8993(81)91059-3. [DOI] [PubMed] [Google Scholar]
  30. Pelletier G., Steinbusch H. W., Verhofstad A. A. Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature. 1981 Sep 3;293(5827):71–72. doi: 10.1038/293071a0. [DOI] [PubMed] [Google Scholar]
  31. Price D. A., Greenberg M. J. Structure of a molluscan cardioexcitatory neuropeptide. Science. 1977 Aug 12;197(4304):670–671. doi: 10.1126/science.877582. [DOI] [PubMed] [Google Scholar]
  32. Schwanzel-Fukuda M., Silverman A. J. The nervus terminalis of the guinea pig: a new luteinizing hormone-releasing hormone (LHRH) neuronal system. J Comp Neurol. 1980 May 15;191(2):213–225. doi: 10.1002/cne.901910205. [DOI] [PubMed] [Google Scholar]
  33. Sherwood N., Eiden L., Brownstein M., Spiess J., Rivier J., Vale W. Characterization of a teleost gonadotropin-releasing hormone. Proc Natl Acad Sci U S A. 1983 May;80(9):2794–2798. doi: 10.1073/pnas.80.9.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silverman A. J., Antunes J. L., Abrams G. M., Nilaver G., Thau R., Robinson J. A., Ferin M., Krey L. C. The luteinizing hormone-releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed (Macaca nemestrina) monkeys: new observations on thick, unembedded sections. J Comp Neurol. 1982 Nov 1;211(3):309–317. doi: 10.1002/cne.902110309. [DOI] [PubMed] [Google Scholar]
  35. Stacey N. E., Kyle A. L. Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish. Physiol Behav. 1983 Apr;30(4):621–628. doi: 10.1016/0031-9384(83)90231-7. [DOI] [PubMed] [Google Scholar]
  36. Stell W. K. Horizontal cell axons and axon terminals in goldfish retina. J Comp Neurol. 1975 Feb 15;159(4):503–520. doi: 10.1002/cne.901590405. [DOI] [PubMed] [Google Scholar]
  37. Tramu G., Pillez A., Leonardelli J. An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J Histochem Cytochem. 1978 Apr;26(4):322–324. doi: 10.1177/26.4.207771. [DOI] [PubMed] [Google Scholar]
  38. Weber E., Evans C. J., Samuelsson S. J., Barchas J. D. Novel peptide neuronal system in rat brain and pituitary. Science. 1981 Dec 11;214(4526):1248–1251. doi: 10.1126/science.7029714. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES