Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1998 Sep;27(1-3):31–60. doi: 10.1023/A:1008023629269

Molecular analysis of the multidrug transporter, P-glycoprotein

Ursula A Germann 1, Timothy C Chambers 2
PMCID: PMC3449557  PMID: 19002782

Abstract

Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.

Keywords: ATPase, ATP-binding cassette, drug transport, multidrug resistance, P-glycoprotein, phosphorylation

Full Text

The Full Text of this article is available as a PDF (229.4 KB).

References

  1. Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Kramer R, Guidotti G, Cantiello HF. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci USA. 1993;90:312–316. doi: 10.1073/pnas.90.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aftab DT, Yang JM, Hait WN. Functional role of phosphorylation of the multidrug transporter (P-glycoprotein) by protein kinase C in multidrug-resistant MCF-7 cells. Oncol Res. 1994;6:59–70. [PubMed] [Google Scholar]
  3. Ahmad S, Glazer RI. Expression of the antisense cDNA for protein kinase-C-alpha attenuates resistance in doxorubicin-resistant MCF-7 breast carcinoma cells. Mol Pharmacol. 1993;43:858–862. [PubMed] [Google Scholar]
  4. Ahmad S, Safa AR, Glazer RI. Modulation of P-glycoprotein by protein kinase C alpha in a baculovirus expression system. Biochemistry. 1994;33:10313–10318. doi: 10.1021/bi00200a011. [DOI] [PubMed] [Google Scholar]
  5. Akiyama S., Cornwell MM, Kuwano M, Pastan I, Gottesman MM. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 1988;33:144–147. [PubMed] [Google Scholar]
  6. Al-Shawi MK, Senior AE. Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem. 1993;268:4197–4206. [PubMed] [Google Scholar]
  7. Al-Shawi MK, Urbatsch IL, Senior AE. Covalent inhibitors of P-glycoprotein ATPase activity. J Biol Chem. 1994;269:8986–8992. [PubMed] [Google Scholar]
  8. Altenberg GA, Vanoye CG, Horton JK, Reuss L. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane. Proc Natl Acad Sci U S A. 1994;91:4654–4657. doi: 10.1073/pnas.91.11.4654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ambudkar SV, Lelong IH, Zhang JP, Cardarelli CO, Gottesman MM, Pastan I. Partial purification and reconstitution of the human multidrug resistance pump-characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci. USA. 1992;89:8472–8476. doi: 10.1073/pnas.89.18.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ambudkar SV. Purification and reconstitution of functional human P-glycoprotein. J Bioenerg Biomembr. 1995;27:23–29. doi: 10.1007/BF02110327. [DOI] [PubMed] [Google Scholar]
  11. Ambudkar SV, Cardarelli CO, Pashinsky I, Stein WD. Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J Biol Chem. 1997;272:21160–21166. doi: 10.1074/jbc.272.34.21160. [DOI] [PubMed] [Google Scholar]
  12. Ames GF-L, Mimura CS, Holbrook SR, Shyamala V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia colito humans. Adv Enzymol. 1992;65:1–47. doi: 10.1002/9780470123119.ch1. [DOI] [PubMed] [Google Scholar]
  13. Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, Smith AE, Welsh MJ. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991;253:202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  14. Arias IM. Is the multidrug resistance an ATP channel. Hepatology. 1993;18:216–217. [PubMed] [Google Scholar]
  15. Arsenault AL, Ling V, Kartner N. Altered plasma membrane ultrastructure in multidrug-resistant cells. Biochim Biophys Acta. 1988;938:315–321. doi: 10.1016/0005-2736(88)90169-1. [DOI] [PubMed] [Google Scholar]
  16. Ayesh S, Shao YM, Stein WD. Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochim Biophys Acta. 1996;1316:8–18. doi: 10.1016/0925-4439(96)00008-7. [DOI] [PubMed] [Google Scholar]
  17. Azzaria M, Schurr E, Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol. 1989;9:5289–5297. doi: 10.1128/mcb.9.12.5289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bates SE, Currier SJ, Alvarez M, Fojo AT. Modulation of P-glycoprotein phosphorylation and drug transport by sodium butyrate. Biochemistry. 1992;31:6366–6372. doi: 10.1021/bi00143a002. [DOI] [PubMed] [Google Scholar]
  19. Bates SE, Lee JS, Dickstein B, Spolyar M, Fojo AT. Differential modulation of P-glycoprotein transport by protein kinase inhibition. Biochemistry. 1993;32:9156–9164. doi: 10.1021/bi00086a022. [DOI] [PubMed] [Google Scholar]
  20. Baubichon-Cortay H, Baggetto LG, Dayan G, Di Pietro A. Overexpression and purification of the carboxyl-terminal nucleotide-binding domain from mouse P-glycoprotein. J Biol Chem. 1994;269:22983–22989. [PubMed] [Google Scholar]
  21. Beaudet L, Gros P. Functional dissection of P-glycoprotein nucleotide binding domains in chimeric and mutant proteins. J Biol Chem. 1995;270:17159–17170. doi: 10.1074/jbc.270.29.17159. [DOI] [PubMed] [Google Scholar]
  22. Beck WT, Danks MK. Characteristics of multidrug resistance in human tumor cells. In: Roninson IB, editor. Molecular and cellular biology of multidrug resistance in tumor cells. New York: Plenum Publishing Corporation; 1991. pp. 3–46. [Google Scholar]
  23. Beck WT, Qian X-D. Photoaffinity substrates for P-glycoprotein. Biochem Pharmacol. 1992;43:89–93. doi: 10.1016/0006-2952(92)90665-6. [DOI] [PubMed] [Google Scholar]
  24. Béja O, Bibi E. Multidrug resistance protein (Mdr)-alkaline phosphatase hybrids in Escherichia colisuggest a major revision in the topology of the C-terminal half of Mdr. J Biol Chem. 1995;270:12351–12354. doi: 10.1074/jbc.270.21.12351. [DOI] [PubMed] [Google Scholar]
  25. Bellamy WT. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol. 1996;36:161–183. doi: 10.1146/annurev.pa.36.040196.001113. [DOI] [PubMed] [Google Scholar]
  26. Bibi E, Béja O. Membrane topology of multidrug resistance protein expressed in Escherichia coli. J Biol Chem. 1994;269:19910–19915. [PubMed] [Google Scholar]
  27. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970;30:1174–1184. [PubMed] [Google Scholar]
  28. Boer R, Dichtl M, Borchers C, Ulrich WR, Marecek JF, Prestwich GD, Glossmann H, Striessnig J. Reversible labeling of a chemosensitizer binding domain of P-glycoprotein with a novel 1,4-dihydropyridine drug transport inhibitor. Biochemistry. 1996;35:1387–1396. doi: 10.1021/bi951912u. [DOI] [PubMed] [Google Scholar]
  29. Boer R, Ulrich WR, Haas S, Borchers C, Gekeler V, Boss H, Przybylski M, Schodl A. Interaction of cytostatics and chemosensitizers with the dexniguldipine binding site on P-glycoprotein. Eur J Pharmacol. 1996;295:253–260. doi: 10.1016/0014-2999(95)00649-4. [DOI] [PubMed] [Google Scholar]
  30. Borchers C, Ulrich WR, Klemm K, Ise W, Gekeler V, Haas S, Schodl A, Conrad J, Przybylski M, Boer R. B9209-005, an azido derivative of the chemosensitizer dexniguldipine-HCl, photolabels P-glycoprotein. Mol Pharmacol. 1995;48:21–29. [PubMed] [Google Scholar]
  31. Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271:3163–3171. doi: 10.1074/jbc.271.6.3163. [DOI] [PubMed] [Google Scholar]
  32. Borst P, Schinkel AH. What have we learnt thus far from mice with disrupted P-glycoprotein genes? Eur J Cancer. 1996;32A:985–990. doi: 10.1016/0959-8049(96)00063-9. [DOI] [PubMed] [Google Scholar]
  33. Borst P, Schinkel AH. Genetic dissection of the function of mammalian P-glycoproteins. Trends Genet. 1997;13:217–222. doi: 10.1016/S0168-9525(97)01112-8. [DOI] [PubMed] [Google Scholar]
  34. Boscoboinik D, Debanne MT, Stafford AR, Jung CY, Gupta RS, Epand RM. Dimerization of the P-glycoprotein in membranes. Biochim Biophys Acta. 1990;1027:225–228. doi: 10.1016/0005-2736(90)90311-b. [DOI] [PubMed] [Google Scholar]
  35. Bradley G, Juranka PF, Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988;948:87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  36. Brock I, Hipfner DR, Nielsen BS, Jensen PB, Deeley RG, Cole SP, Sehested M. Sequential coexpression of the multidrug resistance genes MRP and mdr1 and their products in VP-16 (etoposide)-selected H69 small cell lung cancer cells. Cancer Res. 1995;55:459–462. [PubMed] [Google Scholar]
  37. Brown PC, Thorgeirsson SS, Silverman JA. Cloning and regulation of the rat mdr2 gene. Nucleic Acids Res. 1993;21:3885–3891. doi: 10.1093/nar/21.16.3885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Bruggemann EP, Germann UA, Gottesman MM, Pastan I. Two different regions of P-glycoprotein are photoaffinity labeled by azidopine. J Biol Chem. 1989;264:15483–15488. [PubMed] [Google Scholar]
  39. Bruggemann EP, Currier SJ, Gottesman MM, Pastan I. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J Biol Chem. 1992;267:21020–21026. [PubMed] [Google Scholar]
  40. Busche R, Tummler B, Riordan JR, Cano-Gauci DF. Preparation and utility of a radioiodinated analogue of daunomycin in the study of multidrug resistance. Mol Pharmacol. 1989;35:414–421. [PubMed] [Google Scholar]
  41. Buschman E, Gros P. Functional analysis of chimeric genes obtained by exchanging homologous domains of the mouse mdr1 and mdr2 genes. Mol Cell Biol. 1991;11:595–603. doi: 10.1128/mcb.11.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Buschman E, Arceci RJ, Croop JM, Che M, Arias IM, Housman DE, Gros P. mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J Biol Chem. 1992;267:18093–18099. [PubMed] [Google Scholar]
  43. Cardarelli CO, Aksentijevich I, Pastan I, Gottesman MM. Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res. 1995;55:1086–1091. [PubMed] [Google Scholar]
  44. Chambers TC, McAvoy EM, Jacobs J., Eilon G. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem. 1990;265:7679–7686. [PubMed] [Google Scholar]
  45. Chambers TC, Zheng B, Kuo JF. Regulation by phorbol ester and protein kinase-C inhibitors, and by a protein phosphatase inhibitor (okadaic acid), of P-glycoprotein phosphorylation and relationship to drug accumulation in multidrug-resistant human-KB cells. Mol Pharmacol. 1992;41:1008–1015. [PubMed] [Google Scholar]
  46. Chambers TC, Kuo JF. Phosphorylation and regulation of P-glycoprotein by protein kinase C. In: Miyazaki T., Takaku F., Sakurada K., editors. The mechanism and new approach on drug resistance of cancer cells. Amsterdam: Elsevier Science Publishers; 1993. pp. 159–166. [Google Scholar]
  47. Chambers TC, Pohl J, Raynor RL, Kuo JF. Identification of specific sites in human P-glycoprotein phosphorylated by protein kinase-C. J Biol Chem. 1993;268:4592–4595. [PubMed] [Google Scholar]
  48. Chambers TC, Pohl J, Glass DB, Kuo JF. Phosphorylation by protein kinase C and cyclic AMP-dependent protein kinase of synthetic peptides derived from the linker region of human P-glycoprotein. Biochem J. 1994;299:309–315. doi: 10.1042/bj2990309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Chambers TC, Germann UA, Gottesman MM, Pastan I, Kuo JF and Ambudkar SV (1995) Bacterial expression of the linker region of human MDR1 P-glycoprotein and mutational analysis of phosphorylation sites. Biochemistry: 14156-14162. [DOI] [PubMed]
  50. Chambers TC. Phosphorylation of proteins involved in multidrug resistance. In: Gupta S., Tsuruo T., editors. Multidrug resistance in cancer cells. Chichester, U.K.: John Wiley & Sons; 1996. pp. 303–318. [Google Scholar]
  51. Chaudhary P, Roninson IB. Activation of MDR1 (Pglycoprotein) gene expression in human cells by protein kinase C agonists. Oncol Res. 1992;4:281–290. [PubMed] [Google Scholar]
  52. Chen C-J, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986;47:381–389. doi: 10.1016/0092-8674(86)90595-7. [DOI] [PubMed] [Google Scholar]
  53. Chen G, Duran GE, Steger KA, Lacayo NJ, Jaffrezou JP, Dumontet C, Sikic BI. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. J Biol Chem. 1997;272:5974–5982. doi: 10.1074/jbc.272.9.5974. [DOI] [PubMed] [Google Scholar]
  54. Childs S, Ling V. The MDR superfamily of genes and its biological implications. Important Adv Oncol. 1994;1994:21–36. [PubMed] [Google Scholar]
  55. Choi K, Chen C-J, Kriegler M, Roninson IB. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell. 1989;53:519–529. doi: 10.1016/0092-8674(88)90568-5. [DOI] [PubMed] [Google Scholar]
  56. Cianfriglia M, Willingham MC, Tombesi M, Scagliotti GV, Frasca G, Chersi A. P-glycoprotein epitope mapping. I. Identification of a linear human-specific epitope in the fourth loop of the P-glycoprotein extracellular domain by MM4.17 murine monoclonal antibody to human multi-drug-resistant cells. Int J Cancer. 1994;56:153–160. doi: 10.1002/ijc.2910560127. [DOI] [PubMed] [Google Scholar]
  57. Cianfriglia M, Poloni F, Signoretti C, Romagnoli G, Tombesi M, Felici F. Topology of MDR1-P-glycoprotein as indicated by epitope mapping of monoclonal antibodies to human MDR cells. Cytotechnology. 1996;19:247–251. doi: 10.1007/BF00744220. [DOI] [PubMed] [Google Scholar]
  58. Cordon-Cardo C, O'Brien JP. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38:1277–1287. doi: 10.1177/38.9.1974900. [DOI] [PubMed] [Google Scholar]
  59. Cornwell MM. Regulation of MDR genes. In: Gupta S, Tsuruo T, editors. Multidrug resistance in cancer cells. Chichester, U.K.: John Wiley & Sons; 1996. pp. 39–48. [Google Scholar]
  60. Cornwell MM, Gottesman MM, Pastan I. Increased vinblastine binding to membrane vesicles from multidrug resistant KB cells. J Biol Chem. 1986;262:7921–7928. [PubMed] [Google Scholar]
  61. Cornwell MM, Safa AR, Felsted RL, Gottesman MM, Pastan I. Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150-170 kDa protein detected by photoaffinity labeling. Proc Natl Acad Sci USA. 1986;83:3847–3850. doi: 10.1073/pnas.83.11.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Cornwell MM, Tsuruo T, Gottesman MM, Pastan I. ATP-binding properties of P-glycoprotein from multidrug resistant KB cells. FASEB J. 1987;1:51–54. doi: 10.1096/fasebj.1.1.2886389. [DOI] [PubMed] [Google Scholar]
  63. Cornwell MM, Pastan I, Gottesman MM. Binding of drugs and ATP by P-glycoprotein and transport of drugs by vesicles from human multidrug-resistant cells. In: Roninson I.B., editor. Molecular and cellular biology of multidrug resistance in tumor cells. New York: Plenum Publishing Corporation; 1991. pp. 229–242. [Google Scholar]
  64. Currier SJ, Ueda K, Willingham MC, Pastan I, Gottesman MM. Deletion and insertion mutants of the multidrug transporter. J Biol Chem. 1989;264:14376–14381. [PubMed] [Google Scholar]
  65. Currier SJ, Kane SE, Willingham MC, Cardarelli CO, Pastan I, Gottesman MM. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters. J Biol Chem. 1992;267:25153–25159. [PubMed] [Google Scholar]
  66. Danø K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochem Biophys Acta. 1973;323:466–483. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  67. Dawidowicz EA. Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem. 1987;56:43–61. doi: 10.1146/annurev.bi.56.070187.000355. [DOI] [PubMed] [Google Scholar]
  68. Dayan G, Baubichon-Cortay H, Jault JM, Cortay JC, Deleage G, Di Pietro A. Recombinant N-terminal nucleotide-binding domain from mouse P-glycoprotein. Overexpression, purification, and role of cysteine 430. J Biol Chem. 1996;271:11652–11658. doi: 10.1074/jbc.271.20.11652. [DOI] [PubMed] [Google Scholar]
  69. Debry P, Nash EA, Neklason DW, Metherall JE. Role of multidrug resistance P-glycoproteins in cholesterol esterification. J Biol Chem. 1997;272:1026–1031. doi: 10.1074/jbc.272.2.1026. [DOI] [PubMed] [Google Scholar]
  70. Demeule M, Wenger RM, Beliveau R. Molecular interactions of cyclosporin A with P-glycoprotein. Photolabeling with cyclosporin derivatives. J Biol Chem. 1997;272:6647–6652. doi: 10.1074/jbc.272.10.6647. [DOI] [PubMed] [Google Scholar]
  71. Demmer A, Dunn T, Hoof T, Kubesch P, Tummler B. Competitive inhibition of photoaffinity labelling of P-glycoprotein by anticancer drugs and modulators including S9788. Eur J Pharmacol. 1996;315:339–343. doi: 10.1016/s0014-2999(96)00616-4. [DOI] [PubMed] [Google Scholar]
  72. Deuchars KL, Duthie M, Ling V. Identification of distinct P-glycoprotein gene sequences in rat. Biochim Biophys Acta. 1992;1130:157–165. doi: 10.1016/0167-4781(92)90523-3. [DOI] [PubMed] [Google Scholar]
  73. Devault A, Gros P. Two members of the mouse mdrgene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol. 1990;10:1652–1663. doi: 10.1128/mcb.10.4.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Devine SE, Ling V, Melera PW. Amino acid substitutions in the 6th transmembrane domain of P-glycoprotein alter multidrug resistance. Proc Natl Acad Sci USA. 1992;89:4564–4568. doi: 10.1073/pnas.89.10.4564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Devine SE, Melera PW. Diversity of multidrug resistance in mammalian cells. J Biol Chem. 1994;269:6133–6139. [PubMed] [Google Scholar]
  76. Dhir R, Gros P. Functional analysis of chimeric proteins constructed by exchanging homologous domains of two P-glycoproteins conferring distinct drug resistance profiles. Biochemistry. 1992;31:6103–6110. doi: 10.1021/bi00141a021. [DOI] [PubMed] [Google Scholar]
  77. Doige CA, Yu XH, Sharom FJ. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992;1109:149–160. doi: 10.1016/0005-2736(92)90078-z. [DOI] [PubMed] [Google Scholar]
  78. Doige CA, Yu XH, Sharom FJ. The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochim Biophys Acta. 1993;1146:65–72. doi: 10.1016/0005-2736(93)90339-2. [DOI] [PubMed] [Google Scholar]
  79. Dong M, Penin F, Baggetto LG. Efficient purification and reconstitution of P-glycoprotein for functional and structural studies. J Biol Chem. 1996;271:28875–28883. doi: 10.1074/jbc.271.46.28875. [DOI] [PubMed] [Google Scholar]
  80. Endicott JA, Juranka PF, Sarangi F, Gerlach JH, Deuchars KL, Ling V. Simultaneous expression of two P-glycoprotein genes in drug-sensitive Chinese hamster ovary cells. Mol Cell Biol. 1987;7:4075–4081. doi: 10.1128/mcb.7.11.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  82. Endicott JA, Sarangi F, Ling V. Complete cDNA sequences encoding the Chinese hamster P-glycoprotein gene family. DNA Seq. 1991;2:89–101. doi: 10.3109/10425179109039677. [DOI] [PubMed] [Google Scholar]
  83. Eytan GD, Borgnia MJ, Regev R, Assaraf YG. Transport of polypeptide ionophores into proteoliposomes reconstituted with rat liver P-glycoprotein. J Biol Chem. 1994;269:26058–26065. [PubMed] [Google Scholar]
  84. Eytan GD, Regev R, Assaraf YG. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J Biol Chem. 1996;271:3172–3178. doi: 10.1074/jbc.271.6.3172. [DOI] [PubMed] [Google Scholar]
  85. Ferry DR, Russell MA, Cullen MH. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is allosterically coupled to a vinca-alkaloid-selective binding site. Biochem Biophys Res Commun. 1992;188:440–445. doi: 10.1016/0006-291x(92)92404-l. [DOI] [PubMed] [Google Scholar]
  86. Ferry DR, Malkhandi PJ, Russell MA, Kerr DJ. Allosteric regulation of [3H]vinblastine binding to P-glycoprotein of MCF-7 ADR cells by dexniguldipine. Biochem Pharmacol. 1995;49:1851–1861. doi: 10.1016/0006-2952(94)00517-p. [DOI] [PubMed] [Google Scholar]
  87. Fine RL, Patel J, Chabner BA. Phorbol esters induce multidrug resistance in human breast cancer cells. Proc Natl Acad Sci USA. 1988;85:582–586. doi: 10.1073/pnas.85.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Fine RL, Chambers TC, Sachs CW. P-glycoprotein, multidrug resistance and protein kinase C. Stem Cells. 1996;14:47–55. doi: 10.1002/stem.140047. [DOI] [PubMed] [Google Scholar]
  89. Fojo A, Akiyama S-I, Gottesman MM, Pastan I. Reduced drug accumulation in multiply drug-resistant human KB carcinoma cell lines. Cancer Res. 1985;45:3002–3007. [PubMed] [Google Scholar]
  90. Ford JM. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer. 1996;32A:991–1001. doi: 10.1016/0959-8049(96)00047-0. [DOI] [PubMed] [Google Scholar]
  91. Furuya KN, Gebhardt R, Schuetz EG, Schuetz JD. Isolation of rat pgp3 cDNA: evidence for gender and zonal regulation of expression in the liver. Biochim Biophys Acta. 1994;1219:636–644. doi: 10.1016/0167-4781(94)90222-4. [DOI] [PubMed] [Google Scholar]
  92. Garrigos M, Mir LM, Orlowski S. Competitive and non-competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase-further experimental evidence for a multisite model. Eur J Biochem. 1997;244:664–673. doi: 10.1111/j.1432-1033.1997.00664.x. [DOI] [PubMed] [Google Scholar]
  93. Georges E, Bradley G, Gariepy J, Ling V. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc Natl Acad Sci USA. 1990;87:152–156. doi: 10.1073/pnas.87.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Georges E, Tsuruo T, Ling V. Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J Biol Chem. 1993;268:1792–1798. [PubMed] [Google Scholar]
  95. Germann UA. Molecular analysis of the multidrug transporter. Cytotechnology. 1993;12:33–62. doi: 10.1007/BF00744657. [DOI] [PubMed] [Google Scholar]
  96. Germann UA, Chambers TC, Ambudkar SV, Pastan I, Gottesman MM. Effects of phosphorylation of P-glycoprotein on multidrug resistance. J Bioenerg Biomembr. 1995;27:53–61. doi: 10.1007/BF02110331. [DOI] [PubMed] [Google Scholar]
  97. Germann UA. P-glycoprotein-a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996;32A:927–944. doi: 10.1016/0959-8049(96)00057-3. [DOI] [PubMed] [Google Scholar]
  98. Germann UA, Chambers TC, Ambudkar SV, Licht T, Cardarelli CO, Pastan I, Gottesman MM. Characterization of phosphorylation-defective mutants of human P-glycoprotein expressed in mammalian cells. J Biol Chem. 1996;271:1708–1716. doi: 10.1074/jbc.271.3.1708. [DOI] [PubMed] [Google Scholar]
  99. Germann UA, Shlyakhter D, Mason VS, Zelle RE, Duffy JP, Galullo V, Armistead DM, Saunders JO, Boger J, Harding MW. Cellular and biochemical characterization of VX-710 as a chemosensitizer: reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs. 1997;8:125–140. doi: 10.1097/00001813-199702000-00004. [DOI] [PubMed] [Google Scholar]
  100. Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, Sepúlveda FV. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell. 1992;71:23–32. doi: 10.1016/0092-8674(92)90263-c. [DOI] [PubMed] [Google Scholar]
  101. Glavy JS, Horwitz SB, Orr GA. Identification of the in vivo phosphorylation sites for acidic-directed kinases in murine mdr1b P-glycoprotein. J Biol Chem. 1997;272:5909–5914. doi: 10.1074/jbc.272.9.5909. [DOI] [PubMed] [Google Scholar]
  102. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  103. Goodfellow HR, Sardini A, Ruetz S, Callaghan R, Gros P, Mc-Naughton PA, Higgins CF. Protein kinase C-mediated phosphorylation does not regulate drug transport by the human multidrug resistance P-glycoprotein. J Biol Chem. 1996;271:13668–13674. doi: 10.1074/jbc.271.23.13668. [DOI] [PubMed] [Google Scholar]
  104. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  105. Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I. Genetic analysis of the multidrug transporter. Annu Rev Genet. 1995;29:607–649. doi: 10.1146/annurev.ge.29.120195.003135. [DOI] [PubMed] [Google Scholar]
  106. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev. 1996;6:610–617. doi: 10.1016/s0959-437x(96)80091-8. [DOI] [PubMed] [Google Scholar]
  107. Greenberger LM, Yang CH, Gindin E, Horwitz SB. Photoaffinity probes for the alpha 1-adrenergic receptor and the calcium channel bind to a common domain in P-glycoprotein. J Biol Chem. 1990;265:4394–4401. [PubMed] [Google Scholar]
  108. Greenberger LM, Lisanti CJ, Silva JT, Horwitz SB. Domain mapping of the photoaffinity drug-binding sites in Pglycoprotein encoded mouse mdr1b. J Biol Chem. 1991;266:20744–20751. [PubMed] [Google Scholar]
  109. Greenberger LM. Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domain-6 and domain-12. J Biol Chem. 1993;268:11417–11425. [PubMed] [Google Scholar]
  110. Gros P, Ben Neriah Y, Croop J, Housman DE. Isolation and characterization of a complementary DNA that confers multidrug resistance. Nature. 1986;323:728–731. doi: 10.1038/323728a0. [DOI] [PubMed] [Google Scholar]
  111. Gros P, Croop J, Housman DE. Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986;47:371–380. doi: 10.1016/0092-8674(86)90594-5. [DOI] [PubMed] [Google Scholar]
  112. Gros P, Croop J, Roninson IB, Varshavsky A, Housman DE. Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells. Proc Natl Acad Sci USA. 1986;83:337–341. doi: 10.1073/pnas.83.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Gros P, Raymond M, Bell J, Housman DE. Cloning and characterization of a second member of the mouse mdrgene family. Mol Cell Biol. 1988;8:2770–2778. doi: 10.1128/mcb.8.7.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Gros P, Dhir R, Croop J, Talbot F. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc Natl Acad Sci USA. 1991;88:7289–7293. doi: 10.1073/pnas.88.16.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Gupta S, Patel K, Singh H, Gollapudi S. Effect of Calphostin C (PKC inhibitor) on daunorubicin resistance in P388/ADR and HL60/AR cells: reversal of drug resistance possibly via P-glycoprotein. Cancer Lett. 1994;76:139–145. doi: 10.1016/0304-3835(94)90390-5. [DOI] [PubMed] [Google Scholar]
  116. Gupta KP, Ward NE, Gravitt KR, Bergman PJ, O'Brian CA. Partial reversal of multidrug resistance in human breast cancer cells by an N-myristoylated protein kinase C-alpha pseudosubstrate peptide. J Biol Chem. 1996;271:2102–2111. doi: 10.1074/jbc.271.4.2102. [DOI] [PubMed] [Google Scholar]
  117. Hamada H, Hagiwara K-I, Nakajima T, Tsuruo T. Phosphorylation of the Mr 170 000 to 180 000 glycoprotein specific to multidrug-resistant tumor cells: effects of verapamil, trifluoperazine, and phorbol esters. Cancer Res. 1987;47:2860–2865. [PubMed] [Google Scholar]
  118. Hamada H, Tsuruo T. Characterization of the ATPase activity of the Mr 170 000 to 180 000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells. Cancer Res. 1988;48:4926–4932. [PubMed] [Google Scholar]
  119. Hamada H, Tsuruo T. Purification of the 170-to 180-kilodalton membrane glycoprotein associated with multidrug resistance - 170-to 180-kilodalton membrane glycoprotein is an ATPase. J Biol Chem. 1988;263:1454–1458. [PubMed] [Google Scholar]
  120. Hanna M, Brault M, Kwan T, Kast C, Gros P. Mutagenesis of transmembrane domain 11 of P-glycoprotein by alanine scanning. Biochemistry. 1996;35:3625–3635. doi: 10.1021/bi951333p. [DOI] [PubMed] [Google Scholar]
  121. Hardy SP, Goodfellow HR, Valverde MA, Gill DR, Sepulveda V, Higgins CF. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. Embo J. 1995;14:68–75. doi: 10.1002/j.1460-2075.1995.tb06976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hasegawa S, Abe T, Naito S, Kotoh S, Kumazawa J, Hipfner DR, Deeley RG, Cole SP, Kuwano M. Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. Br J Cancer. 1995;71:907–913. doi: 10.1038/bjc.1995.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Higgins CF. ABC transporters - from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  124. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends Pharmacol Sci. 1992;17:18–21. doi: 10.1016/0968-0004(92)90419-a. [DOI] [PubMed] [Google Scholar]
  125. Higgins CF. The ABC transporter channel superfamily - an overview. Semin Cell Biol. 1993;4:1–5. [Google Scholar]
  126. Higgins CF. P-glycoprotein and cell volume-activated chloride channels. J Bioenerg Biomembr. 1995;27:63–70. doi: 10.1007/BF02110332. [DOI] [PubMed] [Google Scholar]
  127. Homolya L, Hollo Z, Germann UA, Pastan I, Gottesman MM, Sarkadi B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem. 1993;268:21493–21496. [PubMed] [Google Scholar]
  128. Hoof T, Demmer A, Hadam MR, Riordan JR, Tummler B. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1. J Biol Chem. 1994;269:20575–20583. [PubMed] [Google Scholar]
  129. Horio M, Gottesman M., Pastan I. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci USA. 1988;85:3580–3584. doi: 10.1073/pnas.85.10.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Horio M, Chin K-V, Currier SJ, Goldenberg S, Williams C, Pastan I, Gottesman MM, Handler J. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney cell epithelia. J Biol Chem. 1989;264:14880–14884. [PubMed] [Google Scholar]
  131. Hsu SI, Lothstein L, Horwitz SB. Differential overexpression of three mdrgene family members in multidrug-resistant J774.2 mouse cells. J Biol Chem. 1989;264:12053–12062. [PubMed] [Google Scholar]
  132. Hu YP, Chapey C, Robert J. Relationship between the inhibition of azidopine binding to P-glycoprotein by MDR modulators and their efficiency in restoring doxorubicin intracellular accumulation. Cancer Lett. 1996;109:203–209. doi: 10.1016/s0304-3835(96)04454-0. [DOI] [PubMed] [Google Scholar]
  133. Huang Y, Ibrado AM, Reed JC, Bullock G, Ray S, Tang C, Bhalla K. Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Leukemia. 1997;11:253–257. doi: 10.1038/sj.leu.2400557. [DOI] [PubMed] [Google Scholar]
  134. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gullagher MP, Gill DR, Hubbard RE, Higgins CF. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance, and bacterial transport. Nature. 1990;346:362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
  135. Izquierdo MA, Shoemaker RH, Flens MJ, Scheffer GL, Wu L, Prather TR, Scheper RJ. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int J Cancer. 1996;65:230–237. doi: 10.1002/(SICI)1097-0215(19960117)65:2<230::AID-IJC17>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  136. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  137. Juvvadi SR, Glavy JS, Horwitz SB, Orr GA. Domain organization of murine mdr1b P-glycoprotein: the cytoplasmic linker region is a potential dimerization domain. Biochem Biophys Res Commun. 1997;230:442–447. doi: 10.1006/bbrc.1996.5932. [DOI] [PubMed] [Google Scholar]
  138. Kajiji S, Talbot F, Grizzuti K, Vandykephillips V, Agresti M, Safa AR, Gros P. Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain-11 as a putative drug binding site. Biochemistry. 1993;32:4185–4194. doi: 10.1021/bi00067a005. [DOI] [PubMed] [Google Scholar]
  139. Kajiji S, Dreslin JA, Grizzuti K, Gros P. Structurally distinct MDR modulators show specific patterns of reversal against P-glycoproteins bearing unique mutations at serine 939/941. Biochemistry. 1994;33:5041–5048. doi: 10.1021/bi00183a006. [DOI] [PubMed] [Google Scholar]
  140. Kamimoto Y, Gatmaitan Z, Hsu J, Arias IM. The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem. 1989;264:11693–11698. [PubMed] [Google Scholar]
  141. Kane SE. Multidrug resistance in cancer cells. Advances Drug Research. 1996;28:181–252. [Google Scholar]
  142. Kartner N, Evernden-Porelle D, Bradley G, Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature. 1985;316:820–823. doi: 10.1038/316820a0. [DOI] [PubMed] [Google Scholar]
  143. Kast C, Canfield V, Levenson R, Gros P. Membrane topology of P-glycoprotein as determined by epitope insertion: transmembrane organization of the N-terminal domain of mdr3. Biochemistry. 1995;34:4402–4411. doi: 10.1021/bi00013a032. [DOI] [PubMed] [Google Scholar]
  144. Kast C, Canfield V, Levenson R, Gros P. Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence. J Biol Chem. 1996;271:9240–9248. doi: 10.1074/jbc.271.16.9240. [DOI] [PubMed] [Google Scholar]
  145. Kessel D, Botterill V, Wodinsky I. Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res. 1968;28:938–941. [PubMed] [Google Scholar]
  146. Kioka N, Tsubota J, Kakehi Y, Komano T, Gottesman MM, Pastan I, Ueda K. P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly185 with an altered pattern of multidrug resistance. Biochem Biophys Res Commun. 1989;162:224–231. doi: 10.1016/0006-291x(89)91985-2. [DOI] [PubMed] [Google Scholar]
  147. Kokubu N, Cohen D, Watanabe T. Functional modulation of ATPase of P-glycoprotein by C219, a monoclonal antibody against P-glycoprotein. Biochem Biophys Res Commun. 1997;230:398–401. doi: 10.1006/bbrc.1996.5970. [DOI] [PubMed] [Google Scholar]
  148. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996;271:24313–24316. doi: 10.1074/jbc.271.40.24313. [DOI] [PubMed] [Google Scholar]
  149. Lange Y. Cholesterol movement from plasma membrane to rough endoplasmic reticulum. Inhibition by progesterone. J Biol Chem. 1994;269:3411–3414. [PubMed] [Google Scholar]
  150. Lee WP. P-glycoprotein is hyperphosphorylated in multidrug resistant HOB1 lymphoma cells treated with overdose of vincristine. Biochim Biophys Acta. 1995;1245:57–61. doi: 10.1016/0304-4165(95)00057-i. [DOI] [PubMed] [Google Scholar]
  151. Lelong IH, Padmanabhan R, Lovelace E, Pastan I, Gottesman MM. ATP and GTP as alternative energy sources for vinblastine transport by P-170 in KB-V1 plasma membrane vesicles. FEBS Lett. 1992;304:256–260. doi: 10.1016/0014-5793(92)80632-q. [DOI] [PubMed] [Google Scholar]
  152. Leveille-Webster CR, Arias IM. The biology of the Pglycoproteins. J Membrane Biol. 1995;143:89–102. doi: 10.1007/BF00234655. [DOI] [PubMed] [Google Scholar]
  153. Levy D. Membrane proteins which exhibit multiple topological orientations. Essays Biochem. 1996;31:49–60. [PubMed] [Google Scholar]
  154. Ling V. P-glycoprotein: its role in drug resistance. Am J Med. 1995;99:31S–34S. doi: 10.1016/s0002-9343(99)80283-6. [DOI] [PubMed] [Google Scholar]
  155. Liu R, Sharom FJ. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry. 1996;35:11865–11873. doi: 10.1021/bi960823u. [DOI] [PubMed] [Google Scholar]
  156. Liu R, Sharom FJ. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter. Biochemistry. 1997;36:2836–2843. doi: 10.1021/bi9627119. [DOI] [PubMed] [Google Scholar]
  157. Loo TW, Clarke DM. Functional consequences of phenylalanine mutations in the predicted transmembrane domain of p-glycoprotein. J Biol Chem. 1993;268:19965–19972. [PubMed] [Google Scholar]
  158. Loo TW, Clarke DM. Functional consequences of proline mutations in the predicted transmembrane domain of P-Glycoprotein. J Biol Chem. 1993;268:3143–3149. [PubMed] [Google Scholar]
  159. Loo TW, Clarke DM. Functional consequences of glycine mutations in the predicted cytoplasmic loops of Pglycoprotein. J Biol Chem. 1994;269:7243–7248. [PubMed] [Google Scholar]
  160. Loo TW, Clarke DM. Mutations to amino acids located in predicted transmembrane segment 6 (TM6) modulate the activity and substrate specificity of human P-glycoprotein. Biochemistry. 1994;33:14049–14057. doi: 10.1021/bi00251a013. [DOI] [PubMed] [Google Scholar]
  161. Loo TW, Clarke DM. Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides. J Biol Chem. 1994;269:7750–7755. [PubMed] [Google Scholar]
  162. Loo TW, Clarke DM. Covalent modification of human P-glycoprotein mutants containing a single cysteine at either nucleotide-binding fold abolishes drug-stimulated ATPase activity. J Biol Chem. 1995;270:22957–22961. doi: 10.1074/jbc.270.39.22957. [DOI] [PubMed] [Google Scholar]
  163. Loo TW, Clarke DM. Membrane topology of a cysteineless mutant of human P-glycoprotein. J Biol Chem. 1995;270:843–848. doi: 10.1074/jbc.270.2.843. [DOI] [PubMed] [Google Scholar]
  164. Loo TW, Clarke DM. P-glycoprotein: associations between domains and between domains and molecular chaperones. J Biol Chem. 1995;270:21839–21844. doi: 10.1074/jbc.270.37.21839. [DOI] [PubMed] [Google Scholar]
  165. Loo TW, Clarke DM. Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. J Biol Chem. 1995;270:21449–21452. doi: 10.1074/jbc.270.37.21449. [DOI] [PubMed] [Google Scholar]
  166. Loo TW, Clarke DM. Inhibition of oxidative crosslinking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. J Biol Chem. 1996;271:27482–27487. doi: 10.1074/jbc.271.44.27482. [DOI] [PubMed] [Google Scholar]
  167. Loo TW, Clarke DM. The minimum functional unit of human P-glycoprotein appears to be a monomer. J Biol Chem. 1996;271:27488–27492. doi: 10.1074/jbc.271.44.27488. [DOI] [PubMed] [Google Scholar]
  168. Loo TW, Clarke DM. Mutational analysis of the predicted first transmembrane segment of each homologous half of human P-glycoprotein suggests that they are symmetrically arranged in the membrane. J Biol Chem. 1996;271:15414–15419. doi: 10.1074/jbc.271.26.15414. [DOI] [PubMed] [Google Scholar]
  169. Luckie DB, Krouse ME, Harper KL, Law TC, Wine JJ. Selection for MDR1/P-glycoprotein enhances swelling-activated K+ and Cl- currents in NIH/3T3 cells. Am J Physiol. 1994;267:C650–C658. doi: 10.1152/ajpcell.1994.267.2.C650. [DOI] [PubMed] [Google Scholar]
  170. Lum BL, Gosland MP, Kaubisch S, Sikic BI. Molecular targets in oncology: Implications of the multidrug resistance gene. Pharmacotherapy. 1993;13:88–109. [PubMed] [Google Scholar]
  171. Ma LD, Marquardt D, Takemoto L, Center MS. Analysis of P-glycoprotein phosphorylation in HL60 cells isolated for resistance to vincristine. J Biol Chem. 1991;266:5593–5599. [PubMed] [Google Scholar]
  172. Malkhandi J, Ferry DR, Boer R, Gekeler V, Ise W, Kerr DJ. Dexniguldipine-HCl is a potent allosteric inhibitor of [3H]vinblastine binding to P-glycoprotein of CCRF ADR 5000 cells. Eur J Pharmacol. 1994;288:105–114. doi: 10.1016/0922-4106(94)90015-9. [DOI] [PubMed] [Google Scholar]
  173. Mellado W, Horwitz SB. Phosphorylation of the multidrug resistance associated glycoprotein. Biochemistry. 1987;26:6900–6904. doi: 10.1021/bi00396a005. [DOI] [PubMed] [Google Scholar]
  174. Metherall JE, Li H, Waugh K. Role of multidrug resistance P-glycoproteins in cholesterol biosynthesis. J Biol Chem. 1996;271:2634–2640. doi: 10.1074/jbc.271.5.2634. [DOI] [PubMed] [Google Scholar]
  175. Metherall JE, Waugh K, Li H. Progesterone inhibits cholesterol biosynthesis in cultured cells. Accumulation of cholesterol precursors. J Biol Chem. 1996;271:2627–2633. doi: 10.1074/jbc.271.5.2627. [DOI] [PubMed] [Google Scholar]
  176. Mimura CS, Holbrook SR, Ames GF-L. Structural model of the nucleotide-binding conserved component of periplasmic permeases. Proc Natl Acad Sci US. 1991;88:84–88. doi: 10.1073/pnas.88.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Morris DI, Speicher LA, Ruoho AE, Tew KD, Seamon KB. Interaction of forskolin with the P-glycoprotein multidrug transporter. Biochemistry. 1991;30:8371–8379. doi: 10.1021/bi00098a014. [DOI] [PubMed] [Google Scholar]
  178. Morris DI, Greenberger LM, Bruggemann EP, Cardarelli C, Gottesman MM, Pastan I, Seamon KB. Localization of the forskolin labeling sites to both halves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin. Mol. Pharmacol. 1994;46:329–337. [PubMed] [Google Scholar]
  179. Müller M, Bakos E, Welker E, Váradi A, Germann UA, Gottesman MM, Morse BS, Roninson IB, Sarkadi B. Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. J Biol Chem. 1996;271:1877–1883. doi: 10.1074/jbc.271.4.1877. [DOI] [PubMed] [Google Scholar]
  180. Naito M, Tsuruo T. Functionally active homodimer of P-glycoprotein in multidrug-resistant tumor cells. Biochem Biophys Res Commun. 1992;185:284–290. doi: 10.1016/s0006-291x(05)80988-x. [DOI] [PubMed] [Google Scholar]
  181. Naito M, Tsuge H, Kuroko C, Koyama T, Tomida A, Tatsuta T, Heike Y, Tsuruo T. Enhancement of cellular accumulation of cyclosporin by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance. J Nat Cancer Inst. 1993;85:311–316. doi: 10.1093/jnci/85.4.311. [DOI] [PubMed] [Google Scholar]
  182. Ojima I, Duclos O, Dorman G, Simonot B, Prestwich GD, Rao S, Lerro KA, Horwitz SB. A new paclitaxel photoaffinity analog with a 3-(4-benzoylphenyl)propanoyl probe for characterization of drug-binding sites on tubulin and P-glycoprotein. J Med Chem. 1995;38:3891–3894. doi: 10.1021/jm00020a001. [DOI] [PubMed] [Google Scholar]
  183. Orlowski S, Mir LM, Belehradek J, Jr., Garrigos M. Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J. 1996;317:515–522. doi: 10.1042/bj3170515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Orr GA, Han EK-H, Browne PC, Nieves E, O'Connor BM. Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein. J Biol Chem. 1993;268:25054–25062. [PubMed] [Google Scholar]
  185. Osborn MT, Chambers TC. Role of the stress-activated/ cJun NH2-terminal protein kinase pathway in the cellular response to Adriamycin and other chemotherapeutic drugs. J Biol Chem. 1996;271:30950–30955. doi: 10.1074/jbc.271.48.30950. [DOI] [PubMed] [Google Scholar]
  186. Oude E., RPJ a., Groen AK. The role of mdr2 Pglycoprotein in biliary lipid secretion. Cross-talk between cancer research and biliary physiology. J Hepatol. 1995;23:617–625. doi: 10.1016/0168-8278(95)80071-9. [DOI] [PubMed] [Google Scholar]
  187. Paulmichl M, Li Y, Wickman K, Ackerman M, Peralta E, Clapham D. New mammalian chloride channel identified by expression cloning. Nature. 1992;356:238–241. doi: 10.1038/356238a0. [DOI] [PubMed] [Google Scholar]
  188. Poloni F, Romagnoli G, Cianfriglia M, Felici F. Isolation of antigenic mimics of MDR1-P-glycoprotein by phagedisplayed peptide libraries. Int J Cancer. 1995;61:727–731. doi: 10.1002/ijc.2910610522. [DOI] [PubMed] [Google Scholar]
  189. Poruchynsky MS, Ling V. Detection of oligomeric and monomeric forms of P-glycoprotein in multidrug resistant cells. Biochemistry. 1994;33:4163–4174. doi: 10.1021/bi00180a009. [DOI] [PubMed] [Google Scholar]
  190. Qian XD, Beck WT. Progesterone photoaffinity labels P-glycoprotein in multidrug-resistant human leukemic lymphoblasts. J Biol Chem. 1990;265:18753–18756. [PubMed] [Google Scholar]
  191. Ramachandra M, Ambudkar SV, Gottesman MM, Pastan I, Hrycyna CA. Functional characterization of a glycine 185-to-valine substitution in human P-glycoprotein by using a vaccinia-based transient expression system. Mol Biol Cell. 1996;7:1485–1498. doi: 10.1091/mbc.7.10.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Rao US, Scarborough GA. Direct demonstration of high affinity interactions of immunosuppressant drugs with the drug binding site of the human P-glycoprotein. Mol Pharmacol. 1994;45:773–776. [PubMed] [Google Scholar]
  193. Rao US. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995;270:6686–6690. [PubMed] [Google Scholar]
  194. Raviv Y, Pollard HB, Bruggemann EP, Pastan I, Gottesman MM. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem. 1990;265:3975–3980. [PubMed] [Google Scholar]
  195. Roepe PD. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim Biophys Acta. 1995;1241:385–405. doi: 10.1016/0304-4157(95)00013-5. [DOI] [PubMed] [Google Scholar]
  196. Roninson IB. Molecular and cellular biology of multidrug resistance in tumor cells. New York: Plenum Publishing Corporation; 1991. [Google Scholar]
  197. Rosenberg MF, Callaghan R, Ford RC, Higgins CF. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem. 1997;272:10685–10694. doi: 10.1074/jbc.272.16.10685. [DOI] [PubMed] [Google Scholar]
  198. Ruetz S, Gros P. Functional expression of P-glycoprotein in secretory vesicles. J Biol Chem. 1994;269:12277–12284. [PubMed] [Google Scholar]
  199. Ruetz S, Gros P. Phospatidylcholine translocase: a physiological role for the mdr2gene. Cell. 1994;77:1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  200. Ruetz S, Gros P. Enhancement of Mdr2-mediated phosphatidylcholine translocation by the bile salt taurocholate. J Biol Chem. 1995;270:25388–25395. doi: 10.1074/jbc.270.43.25388. [DOI] [PubMed] [Google Scholar]
  201. Sachs CW, Safa AR, Harrison SD, Fine RL. Partial inhibition of multidrug resistance by safingol is independent of modulation of P-glycoprotein substrate activities and correlated with inhibition of protein kinase C. J Biol Chem. 1995;270:26639–26648. doi: 10.1074/jbc.270.44.26639. [DOI] [PubMed] [Google Scholar]
  202. Sachs CW, Ballas LM, Mascarella SW, Safa AR, Lewin AH, Loomis C, Carroll FI, Bell RM, Fine RL. Effects of sphingosine stereoisomers on P-glycoprotein phosphorylation and vinblastine accumulation in multidrug-resistant MCF-7 cells. Biochem Pharmacol. 1996;52:603–612. doi: 10.1016/0006-2952(96)00312-7. [DOI] [PubMed] [Google Scholar]
  203. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268:6077–6080. [PubMed] [Google Scholar]
  204. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. PGlycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett. 1993;324:99–102. doi: 10.1016/0014-5793(93)81540-g. [DOI] [PubMed] [Google Scholar]
  205. Safa AR, Glover CJ, Meyets MB, Biedler JL, Felsted RL. Vinblastine photoaffinity labeling of a high-molecular-weight surface membrane glycoprotein specific for multidrug-resistant cells. J Biol Chem. 1986;261:6137–6140. [PubMed] [Google Scholar]
  206. Safa AR, Glover CJ, Sewell JL, Meyers MB, Biedler JL, Felsted RL. Identification of the multidrug-resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem. 1987;262:7884–7888. [PubMed] [Google Scholar]
  207. Safa AR. Photoaffinity labeling of the multidrug-resistancerelated P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci USA. 1988;85:7187–7191. doi: 10.1073/pnas.85.19.7187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Safa AR, Mehta ND, Agresti M. Photoaffinity labeling of P-glycoprotein in multidrug-resistant cells with photoactive analogs of colchicine. Biochem Biophys Res Commun. 1989;161:1402–1408. doi: 10.1016/0006-291x(89)90830-9. [DOI] [PubMed] [Google Scholar]
  209. Safa AR, Stern RK, Choi K, Agresti M, Tamai I, Mehta ND, Roninson IB. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly to Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci USA. 1990;87:7225–7229. doi: 10.1073/pnas.87.18.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Safa AR. Photoaffinity labeling of P-glycoprotein in multidrug-resistant cells. Cancer Invest. 1993;11:46–56. doi: 10.3109/07357909309020260. [DOI] [PubMed] [Google Scholar]
  211. Safa AR, Roberts S, Agresti M, Fine RL. Tamoxifen aziridine, a novel affinity probe for P-glycoprotein in multidrug resistant cells. Biochem Biophys Res Commun. 1994;202:606–612. doi: 10.1006/bbrc.1994.1971. [DOI] [PubMed] [Google Scholar]
  212. Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992;267:4854–4858. [PubMed] [Google Scholar]
  213. Sato W, Yusa K, Naito M, Tsuruo T. Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrug-resistant cells. Biochem Biophys Res Commun. 1990;173:1252–1257. doi: 10.1016/s0006-291x(05)80921-0. [DOI] [PubMed] [Google Scholar]
  214. Schinkel AH, Roelofs MEM, Borst P. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 1991;51:2628–2635. [PubMed] [Google Scholar]
  215. Schinkel AH, Kemp S, Dolle M, Rudenko G, Wagenaar E. N-glycosylation and deletion mutants of the human MDR1 PGlycoprotein. J Biol Chem. 1993;268:7474–7481. [PubMed] [Google Scholar]
  216. Schlemmer SR, Sirotnak FM. Functional studies of Pglycoprotein in inside-out plasma membrane vesicles derived from murine erythroleukemia cells overexpressing MDR3. J Biol Chem. 1994;269:31059–31066. [PubMed] [Google Scholar]
  217. Schurr E, Raymond M, Bell JC, Gros P. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res. 1989;49:2729–2734. [PubMed] [Google Scholar]
  218. Senior AE, Al-Shawi MK, Urbatsch IL. The catalytic cycle of P-glycoprotein. FEBS Lett. 1995;377:285–289. doi: 10.1016/0014-5793(95)01345-8. [DOI] [PubMed] [Google Scholar]
  219. Shapiro AB, Ling V. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem. 1994;269:3745–3754. [PubMed] [Google Scholar]
  220. Shapiro AB, Ling V. Reconstitution of drug transport by purified P-glycoprotein. J Biol Chem. 1995;270:16167–16175. doi: 10.1074/jbc.270.27.16167. [DOI] [PubMed] [Google Scholar]
  221. Sharma S, Rose D. Cloning, overexpression, purification, and characterization of the carboxyl-terminal nucleotide binding domain of P-glycoprotein. J Biol Chem. 1995;270:14085–14093. doi: 10.1074/jbc.270.23.14085. [DOI] [PubMed] [Google Scholar]
  222. Sharom FJ, Yu X, Doige CA. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem. 1993;268:24197–24202. [PubMed] [Google Scholar]
  223. Sharom FJ, Yu X, DiDiodato G, Chu JW. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem J. 1996;320:421–428. doi: 10.1042/bj3200421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Shen D-W, Cardarelli C, Hwang J, Cornwell M, Richert N, Ishii S, Pastan I, Gottesman MM. Multiple drug resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, Adriamycin or vinblastine show changes in expression of specific proteins. J Biol Chem. 1986;261:7762–7770. [PubMed] [Google Scholar]
  225. Shimabuku AM, Nishimoto T, Ueda K, Komano T. P-glycoprotein-ATP hydrolysis by the N-terminal nucleotide-binding domain. J Biol Chem. 1992;267:4308–4311. [PubMed] [Google Scholar]
  226. Shustik C, Dalton W, Gros P. P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation. Mol Aspects Med. 1995;16:1–78. doi: 10.1016/0098-2997(94)00040-a. [DOI] [PubMed] [Google Scholar]
  227. Shyamala V, Baichwald V, Beall E, Ames GF-L. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J Biol Chem. 1991;266:18714–18719. [PubMed] [Google Scholar]
  228. Silverman JA, Raunio H, Gant TW, Thorgeirsson SS. Cloning and characterization of a member of the rat multidrug resistance (mdr) gene family. Gene. 1991;106:229–236. doi: 10.1016/0378-1119(91)90203-n. [DOI] [PubMed] [Google Scholar]
  229. Skach WR, Lingappa VR. Amino-terminal assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J Biol Chem. 1993;268:23552–23561. [PubMed] [Google Scholar]
  230. Skach WR, Calayag MC, Lingappa VR. Evidence for an alternate model of human P-Glycoprotein structure and biogenesis. J Biol Chem. 1993;268:6903–6908. [PubMed] [Google Scholar]
  231. Skach WR, Lingappa VR. Transmembrane orientation and topogenesis of the third and fourth membrane-spanning regions of human P-glycoprotein (MDR1) Cancer Res. 1994;54:3202–3209. [PubMed] [Google Scholar]
  232. Skovsgaard T, Nielsen D, Maare C, Wassermann K. Cellular resistance to cancer chemotherapy. Int Rev Cytology. 1994;156:77–157. doi: 10.1016/s0074-7696(08)62253-6. [DOI] [PubMed] [Google Scholar]
  233. Slapak CA, Mizunuma N, Kufe DW. Expression of the multidrug resistance associated protein and P-glycoprotein in doxorubicin-selected human myeloid leukemia cells. Blood. 1994;84:3113–3121. [PubMed] [Google Scholar]
  234. Smit JJM, Schinkel AH, Oude Elferink RPJ, Groen AK, Wagenaar E, von Deemter L, Mol CAAM, Ottenhofer R, van der Lugt NMT, van Roon MA, van der Valk MA, Offerhaus GJA, Berns AJM, Borst P. Homozygous disruption of the murine mdr2P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75:451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  235. Smit JJ, Schinkel AH, Mol CA, Majoor D, Mooi WJ, Jongsma AP, Lincke CR, Borst P. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest. 1994;71:638–649. [PubMed] [Google Scholar]
  236. Smith CD and Zilfou JT (1995) Circumvention of P-glycoprotein-mediated multiple drug resistance by phosphorylation modulators is independent of protein kinases. J Biol Chem: 28145-28152. [DOI] [PubMed]
  237. Staats J, Marquardt D, Center MS. Characterization of a membrane-associated protein kinase of multidrug-resistant HL60 cells which phosphorylates P-glycoprotein. J Biol Chem. 1990;265:4084–4090. [PubMed] [Google Scholar]
  238. Sugimoto Y, Tsuruo T. Development of multidrug resistance in rodent cell lines. In: Roninson IB, editor. Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells. New York: Plenum Publishing Corporation; 1991. pp. 57–70. [Google Scholar]
  239. Tamai I, Safa AR. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 1991;266:16796–16800. [PubMed] [Google Scholar]
  240. Tang-Wai DF, Kajiji S, DiCapua F, de Graaf D, Roninson IB, Gros P. Human (MDR1) and mouse (mdr1, mdr3) P-glycoproteins can be distinguished by their respective drug resistance profiles and sensitivity to modulators. Biochemistry. 1995;34:32–39. doi: 10.1021/bi00001a005. [DOI] [PubMed] [Google Scholar]
  241. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41:1967–1972. [PubMed] [Google Scholar]
  242. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Increased accumulation of vincristine and Adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 1982;42:4730–4733. [PubMed] [Google Scholar]
  243. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human ‘MDR1’ (Pglycoprotein) gene confers multidrug resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA. 1987;84:3004–3008. doi: 10.1073/pnas.84.9.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992;267:24248–24252. [PubMed] [Google Scholar]
  245. Urbatsch IL, Al-Shawi MK, Senior AE. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Biochemistry. 1994;33:7069–7076. doi: 10.1021/bi00189a008. [DOI] [PubMed] [Google Scholar]
  246. Urbatsch IL, Senior AE. Effects of lipids on ATPase activity of purified Chinese hamster P-glycoprotein. Arch Biochem Biophys. 1995;316:135–140. doi: 10.1006/abbi.1995.1020. [DOI] [PubMed] [Google Scholar]
  247. Urbatsch IL, Sankaran B, Bhagat S, Senior AE. Both Pglycoprotein nucleotide binding sites are catalytically active. J Biol Chem. 1995;270:26956–26961. doi: 10.1074/jbc.270.45.26956. [DOI] [PubMed] [Google Scholar]
  248. Valverde MA, Diáz M, Sepúlveda FV, Gill DR, Hyde SC, Higgins CF. Volume-regulated chloride channels associated with the human multidrug resistance P-glycoprotein. Nature. 1992;355:830–833. doi: 10.1038/355830a0. [DOI] [PubMed] [Google Scholar]
  249. Van der Bliek AM, Baas F, Ten Houte de Lange T, Kooiman PM, Van der Velde-Koerts T, Borst P. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 1987;6:3325–3331. doi: 10.1002/j.1460-2075.1987.tb02653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Van der Bliek AM, Kooiman PM, Schneider C, Borst P. Sequence of mdr3 cDNA, encoding a human P-glycoprotein. Gene. 1988;71:401–411. doi: 10.1016/0378-1119(88)90057-1. [DOI] [PubMed] [Google Scholar]
  251. Van der Valk P, van Kalken CK, Ketelaars H, Broxterman HJ, Scheffer G, Kulper CM, Tsuruo T, Lankelma J, Meijer CJL, Pinedo HM, Scheper RJ. Ann Oncol. 1990;1:56–64. [PubMed] [Google Scholar]
  252. Van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996;87:507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]
  253. Wadkins RM, Roepe PD. Biophysical aspects of Pglycoprotein-mediated multidrug resistance. Int Rev Cytol. 1997;171:121–165. doi: 10.1016/s0074-7696(08)62587-5. [DOI] [PubMed] [Google Scholar]
  254. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the a-and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Weinstein RS, Kuszak JR, Kluskens LF, Coon JS. Pglycoproteins in pathology: the multidrug resistance gene family in humans. Human Path. 1990;21:34–48. doi: 10.1016/0046-8177(90)90073-e. [DOI] [PubMed] [Google Scholar]
  256. Wine JJ, Luckie DB. Cell-volume regulation: Pglycoprotein-a cautionary tale. Curr Biol. 1996;6:1410–1412. doi: 10.1016/s0960-9822(96)00744-0. [DOI] [PubMed] [Google Scholar]
  257. Worrel RT, Butt AG, Cliff WH, Frizzel RA. A volumesensitive chloride conductance in human colonic cell line T84. Am J Physiol. 1989;256:C1111–C1119. doi: 10.1152/ajpcell.1989.256.6.C1111. [DOI] [PubMed] [Google Scholar]
  258. Wright LC, Dyne M, Holmes KT, Mountford CE. Phospholipid and ether linked phospholipid content alter with cellular resistance to vinblastine. Biochem Biophys Res Commun. 1985;133:539–545. doi: 10.1016/0006-291x(85)90940-4. [DOI] [PubMed] [Google Scholar]
  259. Yang C-PH, DePinho SG, Greenberger LM, Arceci RJ, Horwitz SB. Progesterone interacts with P-glycoprotein in multidrug resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989;264:782–788. [PubMed] [Google Scholar]
  260. Yang JM, Chin KV, Hait WN. Involvement of phospholipase C in heat-shock-induced phosphorylation of P-glycoprotein in multidrug resistant human breast cancer cells. Biochem Biophys Res Commun. 1995;210:21–30. doi: 10.1006/bbrc.1995.1622. [DOI] [PubMed] [Google Scholar]
  261. Yang JM, Chin KV, Hait WN. Interaction of Pglycoprotein with protein kinase C in human multidrug resistant carcinoma cells. Cancer Res. 1996;56:3490–3494. [PubMed] [Google Scholar]
  262. Yoshimura A, Kuwazuru Y, Sumizawa T, Ichikawa M, Ikeda S, Ueda T, Akiyama S-I. Cytoplasmic orientation and two-domain structure of the multidrug transporter, Pglycoprotein, demonstrated with sequence-specific antibodies. J Biol Chem. 1989;264:16282–16291. [PubMed] [Google Scholar]
  263. Yu G, Ahmad S, Aquino A, Fairchild CR, Trepel JB, Ohno S, Suzuki K, Tsuruo T, Cowan JH, Glazer RI. Transfection with protein kinase C alpha confers increased multidrug resistance to MCF-7 cells expressing P-glycoprotein. Cancer Commun. 1991;3:181–188. doi: 10.3727/095535491820873263. [DOI] [PubMed] [Google Scholar]
  264. Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to Pglycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989;49:5002–5006. [PubMed] [Google Scholar]
  265. Zhang J-T, Ling V. Study of membrane orientation and glycosylated extracellular loops of mouse P-glycoprotein by in vitrotranslation. J Biol Chem. 1991;266:18224–18232. [PubMed] [Google Scholar]
  266. Zhang JT, Duthie M, Ling V. Membrane topology of the N-terminal half of the hamster P-glycoprotein molecule. J Biol Chem. 1993;268:15101–15110. [PubMed] [Google Scholar]
  267. Zhang JT, Ling V. Involvement of cytoplasmic factors regulating the membrane orientation of P-glycoprotein sequences. Biochemistry. 1995;34:9159–9165. doi: 10.1021/bi00028a027. [DOI] [PubMed] [Google Scholar]
  268. Zhang JT, Lee CH, DuthieMand Ling V. Topological determinants of internal transmembrane segments in P-glycoprotein sequences. J Biol Chem. 1995;270:1742–1746. doi: 10.1074/jbc.270.4.1742. [DOI] [PubMed] [Google Scholar]
  269. Zhang X, Collins KI, Greenberger LM. Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1. J Biol Chem. 1995;270:5441–5448. doi: 10.1074/jbc.270.10.5441. [DOI] [PubMed] [Google Scholar]
  270. Zhang M, Wang G, Shapiro A, Zhang JT. Topological folding and proteolysis profile of P-glycoprotein in membranes of multidrug-resistant cells: implications for the drug-transport mechanism. Biochemistry. 1996;35:9728–9736. doi: 10.1021/bi960400s. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES