Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1998 Sep;27(1-3):81–93. doi: 10.1023/A:1008036015156

A new aspect on glutathione-associated biological function of MRP/GS-X pump and its gene expression

Toshihisa Ishikawa, M Tien Kuo, Kyoji Furuta, Masaaki Suzuki
PMCID: PMC3449568  PMID: 19002785

Abstract

The biological function as well as gene expression of the MRP/GS-X pump is closely linked with cellular GSH metabolism. This article describes two important aspects, i.e., 1) a role of the MRP/GS-X pump in the modulation of cell cycle arrest induced by anticancer prostaglandins; 2) coordinated up-regulation of γ-glutamylcysteine synthetase γ-GCS) and MRP1 genes. The A and J series of prostaglandins (PGs) accumulate in the nuclei to suppress the proliferation of cancer cells. Δ7-Prostaglandin A17-PGA1) methyl ester, a synthetic anticancer PG, increased the mRNA level of the cyclin-dependent kinase inhibitor p21Sdi1/CIP1/WAF1 in human leukemia HL-60 cells. The induction of p21Sdi1/CIP1/WAF1 was associated with the accumulation of hypophosphorylated retinoblastoma protein (pRB) and the suppression of c-myc gene expression. Unlike HL-60 cells, cisplatin-resistant HL-60/R-CP cells were insensitive to Δ7-PGA1 methyl ester. While c-myc expression was transiently suppressed, neither G1 arrest nor hypophosphorylation of pRB was observed with the anticancer PG. Plasma membrane vesicles from HL-60/R-CP cells showed an enhanced level of GS-X pump activity toward the glutathione S-conjugate of Δ7-PGA1 methyl ester. GIF-0019, a potent inhibitor of the GS-X pump, dose-dependently enhanced the cellular sensitivity of HL-60/R-CP cells to Δ7-PGA1 methyl ester, resulting in G1 arrest. The GS-X pump is suggested to play a pivotal role in modulating the biological action of the anticancer PG. The expression of MRP1 and γ-GCS genes can be coordinately up-regulated by cisplatin, 1-[5-(4-amino-2-methyl)pyrimidyl]methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), and heavy metals in human cancer cells. For the up-regulation of these genes, both transcriptional and posttranscriptional regulations are considered to be involved.

Keywords: anticancer prostaglandin, cell cycle arrest, GS-Xpump, multidrug resistance-associated protein (MRP1), p21

Full Text

The Full Text of this article is available as a PDF (166.2 KB).

References

  1. Akimaru K, Kuo MT, Furuta K, Suzuki M, Noyori R, Ishikawa T. Induction of MRP/GS-Xpump and cellular resistance to anticancer prostaglandins. Cytotechnology. 1996;19:221–227. doi: 10.1007/BF00744216. [DOI] [PubMed] [Google Scholar]
  2. Büchler M, König J, Brom M, Kartenbeck J, Spring H, Horie T, Keppler D. cDNA cloning of the hepatocytes canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996;271:15091–15098. doi: 10.1074/jbc.271.25.15091. [DOI] [PubMed] [Google Scholar]
  3. Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst. 1993;85:632–639. doi: 10.1093/jnci/85.8.632. [DOI] [PubMed] [Google Scholar]
  4. Chin K-V, Chuhan SS, Pastan I, Gottesman MM. Regulation of mdrRNA levels in resonse to cytotoxic drugs in rodent cells. Cell Growth and Differ. 1990;1:361–365. [PubMed] [Google Scholar]
  5. Ciaccio PJ, Shen H, Kruh GD, Tew KD. Effects of chronic ethacrinic acis exposure on glutathione conjugation and MRP expression in human colon tumor cells. Biochem Biophys Res Commun. 1996;222:11–115. doi: 10.1006/bbrc.1996.0706. [DOI] [PubMed] [Google Scholar]
  6. Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Dunca AMV, Deeley RG. Overexpression of a transporter gene in a multitrug-resistant human cancer cell line. Science. 1992;258:1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  7. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994;76:1013–1023. doi: 10.1016/0092-8674(94)90379-4. [DOI] [PubMed] [Google Scholar]
  8. El-Deiry WS, Harper JW, O'Connor PM. WAF1/CIP1is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994;54:1169–1174. [PubMed] [Google Scholar]
  9. Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  10. Fardel O, Loyer P, Morel F, Rayanasavanh D, Guillouzo A. Modulation of multidrug resistance gene expression in rat hepatocytes maintained under various culture conditions. Biochem Pharmacol. 1993;44:2259–2262. doi: 10.1016/0006-2952(92)90355-M. [DOI] [PubMed] [Google Scholar]
  11. Gant TW, Silverman JA, Thorgeirsson SS. Regulation of P-glycoprotein gene expression in hepatocyte culture and liver cell lines by a trans-acting transcriptional repressor. Nucleic Acids Res. 1992;20:2841–2846. doi: 10.1093/nar/20.11.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomi A, Ishikawa T, Masuzawa T, Kuo MT. Posttranscriptional regulation of MRP/GS-Xpump and γ-glutamylcysteine synthetase expression by 1-(4-amino-2-methyl-5-pyriminyl)methyl-3-(2-chloroethyl)-3-nitrosourea and cycloheximide in human glioma cells. Biochem Biophys Res Commn. 1997;239:51–56. doi: 10.1006/bbrc.1997.7423. [DOI] [PubMed] [Google Scholar]
  13. Gorospe M, Holbrook NJ. Role of p21 in prostaglandin A2-mediated cellular arrest and death. Cancer Res. 1996;56:475–479. [PubMed] [Google Scholar]
  14. Gorospe M, Liu Y, Xu Q, Chrest FJ, Holbrook NK. Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by prostaglandin A2. Mol Cell Biol. 1996;16:762–770. doi: 10.1128/mcb.16.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gottesman MM, Pastan I. The multidrug transporter, a double-edged sward. J Biol Chem. 1988;263:12163–12166. [PubMed] [Google Scholar]
  16. Harper JW, Adami GR, Wei N, Keyoarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–816. doi: 10.1016/0092-8674(93)90499-G. [DOI] [PubMed] [Google Scholar]
  17. Hitomi M, Shu J, Strom D, Hiebert SW, Harter ML, Stacey DW. Prostaglandin A2 blocks the activation of G1 phase cyclin-dependent kinase without altering mitogen-activated protein kinase stimulation. J Biol Chem. 1996;271:9376–9383. doi: 10.1074/jbc.271.16.9376. [DOI] [PubMed] [Google Scholar]
  18. Honn KV, Marnett LJ. Requirement of a reactive alpha, beta-unsaturated carbonyl for inhibition of tumor growth and induction of differentiation by ‘A’ series prostaglandins. Biochem Biophys Res Commun. 1985;129:34–40. doi: 10.1016/0006-291X(85)91398-1. [DOI] [PubMed] [Google Scholar]
  19. Ishikawa T. ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992;17:463–468. doi: 10.1016/0968-0004(92)90489-V. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa T, Wright CD, Ishizuka H. GS-Xpump is functionally overexpressed in cis-diamminedichloroplatinum(II)-resistant leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 1994;269:29085–29093. [PubMed] [Google Scholar]
  21. Ishikawa T, Bao J-J, Yamane Y, Akimaru K, Frindrich K, Wright CD, Kuo MT. Coordinated induction of MRP/GS-Xpump and-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem. 1996;271:14981–14988. doi: 10.1074/jbc.271.7.3633. [DOI] [PubMed] [Google Scholar]
  22. Ishikawa T, Li Z-S, Lu Y-P, Rea PA. The GS-Xpump in plant, yeast, and animal cells: Structure, function, and gene expression. Biosci Reports. 1997;17:189–207. doi: 10.1023/A:1027385513483. [DOI] [PubMed] [Google Scholar]
  23. Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Molecular cloning of canalicular multispecific organic anion transporter (cMOAT) whose expression is defecttive in mutant rats with hereditary conjugated hyperbilirubinemia (EHBR) Am J Physiol. 1996;272:G16–G22. doi: 10.1152/ajpgi.1997.272.1.G16. [DOI] [PubMed] [Google Scholar]
  24. Jedlitschky G, Leier I, Buchholz U, Barnouin K, Kurz G, Keppler D. Transport of glutathione, glucurinate, and sulfate conjugates by the MRP-gene-encoded conjugate export pump. Cancer Res. 1996;56:988–994. [PubMed] [Google Scholar]
  25. Keppler D, König J. Expression and localization of the conjugate export pump encoded by the MRP2(cMRP/cMOAT) gene in liver. FASEB J. 1997;11:509–516. doi: 10.1096/fasebj.11.7.9212074. [DOI] [PubMed] [Google Scholar]
  26. Kool M, deHaas M, Scheffer GL, Scheper RJ, vanEijk MJ, Juijn JA, Baas F, Borst P. Analysis of expression of cMOAT(MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 1997;57:3537–3547. [PubMed] [Google Scholar]
  27. Kren BT, Steer CJ. Posttranscriptional regulation of gene expresion in liver regeneration: role of mRNA stability. FASEB J. 1996;10:559–573. doi: 10.1096/fasebj.10.5.8621056. [DOI] [PubMed] [Google Scholar]
  28. Kuo MT, Julian J-A, Husain F, Song R, Carson DD. Regulation of multidrug resistance gene mdr1b/mdr1expression in isolated mouse uterine epithelial cells. J. Cell Physiol. 1995;164:132–141. doi: 10.1002/jcp.1041640117. [DOI] [PubMed] [Google Scholar]
  29. Kuo MT, Bao J-J, Curley SA, Lkeguchi M, Johnston DA, Ishikawa T. Frequent coordinated overexpression of the MRP/GS-Xpump and γ-glutamylcysteine synthetase in human colorectal cancers. Cancer Res. 1996;56:3642–3644. [PubMed] [Google Scholar]
  30. Kuo MT, Bao J-J, Furuichi M, Yamane Y, Gomi A, Savarachi N, Masuzawa T, Ishikawa T. Frequent coexpression of MRP/GS-Xpump and γ-glutamylcysteine synthetase mRNA in drug-resistant cells, untreated tumor cells, and normal mouse tissues. Biochem Pharmacol. 1998;55:605–615. doi: 10.1016/S0006-2952(97)00494-2. [DOI] [PubMed] [Google Scholar]
  31. Martinoia E, Grill E, Tommaini R, Kreuz K, Amrhein N. ATP-dependent glutathione S-conjugate' export' pump in the vacuolar membrane of plants. Nature. 1993;364:247–249. doi: 10.1038/364247a0. [DOI] [Google Scholar]
  32. Leier I, Jedlitschky G, Buchholz U, Cole SPC, Deeley RG, Keppler D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994;269:27807–27810. [PubMed] [Google Scholar]
  33. Li Z-S, Zhao Y, Rea PA. Magnesium adenosine 5′-triphosphate-energized transport of glutathione-S-conjugates by plant vacuolar membrane vesicles. Plant Physiol. 1995;107:1257–1268. doi: 10.1104/pp.107.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Li Z-S, Szczypka M, Lu Y-P, Thiele DJ, Rea PA. The yeast cadmium factor (YCF1) is a vacolar glutathione-S-conjugate pump. J Biol Chem. 1996;271:6509–6517. doi: 10.1074/jbc.271.11.6509. [DOI] [PubMed] [Google Scholar]
  35. Loe DW, Almquist KC, Deeley RG, Cole SPC. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles: Demonstration of glutathione-dependent vincristine transport. J Biol Chem. 1996;271:9675–9682. doi: 10.1074/jbc.271.44.27782. [DOI] [PubMed] [Google Scholar]
  36. Loe DW, Almquist KC, Cole SPC, Deeley RG. ATP-dependent 17β-estradiol 17-(β-D-glucuronide) transport by multidrug resistance protein (MRP): Inhibition by cholestatic steroids. J Biol Chem. 1996;271:9683–9689. doi: 10.1074/jbc.271.44.27782. [DOI] [PubMed] [Google Scholar]
  37. Lu Y-P, Li Z-S, Rea PA. AtMRP1gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci USA. 1997;94:8243–8248. doi: 10.1073/pnas.94.15.8243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Marrs K, Alfenito MR, Lloyd AM, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995;375:397–400. doi: 10.1038/375397a0. [DOI] [PubMed] [Google Scholar]
  39. Mulcahy RT, Gipp JJ. Identification of a putative antioxidant response element in the 5′-flanking region of the human γ-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun. 1995;209:227–233. doi: 10.1006/bbrc.1995.1493. [DOI] [PubMed] [Google Scholar]
  40. Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and β-naphthoflavone-induced expression of the human γ-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997;272:7445–7454. doi: 10.1074/jbc.272.11.7445. [DOI] [PubMed] [Google Scholar]
  41. Müller M, Meijer C, Zaman GJ, Borst P, Scheper RJ, Mulder NH, deVries EGE, Jansen PLM. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci USA. 1994;91:13033–13037. doi: 10.1073/pnas.91.26.13033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nakanishi M, Adami GR, Robetorye RS, Noda A, Venable SF, Dimitrov D, Pereira-Smith OM, Smith JR. Exit from G0 and ectry into the cell cycle of cells expressing p21Sdi1 antisense RNA. Proc Natl Acad Sci USA. 1995;92:4352–4356. doi: 10.1073/pnas.92.10.4352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Narumiya S, Fukushima M. Cyclopentenone prostaglandins: anti-proliferative and anti-viral actions and their molecular mechanism. In: Honn KV, Marnett LJ, Nigam S, Walden T, editors. Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Boston: Kluwer Academic Publisher; 1989. pp. 439–448. [Google Scholar]
  44. Narumiya S, Fukushima M. Site and mechanism of growth inhibition by prostaglandins. I. active transport and intracellular accumulation of cyclopentenone prostaglandins, a reaction leading to growth inhibition. J Pharmacol Exp Ther. 1986;239:500–505. [PubMed] [Google Scholar]
  45. Narumiya S, Ohno K, Fujiwara M, Fukushima M. Site and mechanism of growth inhibition by prostaglandins II. temperature-dependent transfer of a cyclopentenone prostaglandin to nuclei. J Pharmacol Exp Ther. 1986;239:506–511. [PubMed] [Google Scholar]
  46. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescenct cell-derived inhibitors of DNA systhesis using an expression screen. Exp Cell Res. 1994;211:90–98. doi: 10.1006/excr.1994.1063. [DOI] [PubMed] [Google Scholar]
  47. Noyori R, Suzuki M. Organic synthesis of prostaglandins: Advancing biology. Science. 1993;259:44–45. doi: 10.1126/science.8418493. [DOI] [PubMed] [Google Scholar]
  48. Ohno K, Sakai Y, Fukushima M, Narumiya S, Fujiwara M. Site and mechanism of growth inhibition by prostaglandins. IV. effect of cyclopetenone prostaglandins on cell cycle progression of G1-enriched HeLa S3 cells. J Pharmacol Exp Ther. 1988;245:294–298. [PubMed] [Google Scholar]
  49. Paulusma CC, Bosma PJ, Zaman GJR, Bakker CTM, Otter M, Scheffer GL, Schepper RJ, Borst P, OudeElferink RPJ. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996;271:1126–1128. doi: 10.1126/science.271.5252.1126. [DOI] [PubMed] [Google Scholar]
  50. Schuetz JD, Strom SC, Schoetz EG. Induction of P-glycoprotein mRNA by protein synthesis inhibition is not controlled by a transcriptional repressor protein in rat and human liver cells. J Cell Physiol. 1995;165:261–272. doi: 10.1002/jcp.1041650207. [DOI] [PubMed] [Google Scholar]
  51. Suzuki M, Morita Y, Koyano H, Koga M, Noyori R. Three-component coupling synthesis of prostaglandins A simplified, general procedure. Tetrahedron. 1990;46:4809–4822. doi: 10.1016/S0040-4020(01)85596-4. [DOI] [Google Scholar]
  52. Suzuki M, Mori M, Niwa T, Hirata R, Furuta K, Ishikawa T, Noyori R. Chemical implications for antitumor and antiviral prostaglandins: Reaction of Δ7-prostaglandin A1 and prostaglandin A1 methyl esters with thiols. J Am Chem Soc. 1997;119:2376–2385. doi: 10.1021/ja9628359. [DOI] [Google Scholar]
  53. Szczypka MS, Wemmie J, Moye-Rowley WS, Thiele DJ. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem. 1994;269:22853–22857. [PubMed] [Google Scholar]
  54. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366:701–704. doi: 10.1038/366701a0. [DOI] [PubMed] [Google Scholar]
  55. Yao K-S, Godwin AK, Johnson SW, Ozols RF, O'Dwyer PJ. Evidence for altered regulation of γ-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995;55:4367–4374. [PubMed] [Google Scholar]
  56. Zaman GJR, Flens M, van Leusden MR, de Haas M, Mülder HS, Lankelma J, Pinedo HM, Scheper RJ, Baas F, Broxterman HJ, Borst P. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA. 1994;91:8822–8826. doi: 10.1073/pnas.91.19.8822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zaman GJR, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C, OudeElferink RPJ, Baas F, Borst P. Role of glutathione in the export of compounds from cells by the multidrug-resistance associated protein. Proc Natl Acad Sci USA. 1995;92:7690–7694. doi: 10.1073/pnas.92.17.7690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zhu Q, Center M. Cloning and sequence analysis of the promoter region of the MRPgene of HL60 cells isolated for resistance to adriamycin. Cancer Res. 1994;54:4488–44902. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES