Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Feb;81(3):955–958. doi: 10.1073/pnas.81.3.955

Isolation and identification of enkephalins in pedal ganglia of Mytilus edulis (Mollusca).

M K Leung, G B Stefano
PMCID: PMC344958  PMID: 6583690

Abstract

An acid extract of pedal ganglia of the mollusc Mytilus edulis was fractionated by high-pressure liquid chromatography with a reverse-phase column. Peak fractions with retention times of those of [Met]- and [Leu]enkephalin were subjected to binding assays in both invertebrate and vertebrate tissues. The results showed that these fractions have the same binding activities as authentic enkephalins. Peptides from these fractions were purified by high-pressure liquid chromatography under isocratic conditions. Sequential amino acid analyses showed that these peptides have the same primary structures as [Met]- and [Leu]enkephalin. These results with M. edulis suggest that invertebrates possess an enkephalinergic system similar to that of higher organisms.

Full text

PDF
955

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alumets J., Hàkanson R., Sundler F., Thorell J. Neuronal localisation of immunoreactive enkephalin and beta-endorphin in the earthworm. Nature. 1979 Jun 28;279(5716):805–806. doi: 10.1038/279805a0. [DOI] [PubMed] [Google Scholar]
  2. Anlezark G., Horton R., Meldrum B. The anticonvulsant action of the (-)- and (+)-enantiomers of propranolol. J Pharm Pharmacol. 1979 Jul;31(7):482–483. doi: 10.1111/j.2042-7158.1979.tb13563.x. [DOI] [PubMed] [Google Scholar]
  3. Huang W. Y., Chang R. C., Kastin A. J., Coy D. H., Schally A. V. Isolation and structure of pro-methionine-enkephalin: Potential enkephalin precursor from porcine hypothalamus. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6177–6180. doi: 10.1073/pnas.76.12.6177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hughes J. Biogenesis, release and inactivation of enkephalins and dynorphins. Br Med Bull. 1983 Jan;39(1):17–24. doi: 10.1093/oxfordjournals.bmb.a071785. [DOI] [PubMed] [Google Scholar]
  5. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  6. Kream R. M., Zukin R. S., Stefano G. B. Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. Positive homotropic cooperativity of lower affinity binding sites. J Biol Chem. 1980 Oct 10;255(19):9218–9224. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Martin R., Schäfer M., Voigt K. H. Enzymatic cleavage prior to antibody incubation as a method for neuropeptide immunocytochemistry. Histochemistry. 1982;74(4):457–467. doi: 10.1007/BF00496659. [DOI] [PubMed] [Google Scholar]
  9. Pert C. B., Snyder S. H. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2243–2247. doi: 10.1073/pnas.70.8.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rémy C., Girardie J., Dubois M. P. Vertebrate neuropeptide-like substances in the suboesophageal ganglion of two insects: Locusta migratoria R. and F. (Orthoptera) and Bombyx mori L. (Lepidoptera). Immunocytological investigation. Gen Comp Endocrinol. 1979 Jan;37(1):93–100. doi: 10.1016/0016-6480(79)90050-9. [DOI] [PubMed] [Google Scholar]
  11. Stefano G. B. Comparative aspects of opioid-dopamine interaction. Cell Mol Neurobiol. 1982 Sep;2(3):167–178. doi: 10.1007/BF00711145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stefano G. B., Hiripi L. Methionine enkephalin and morphine alter monoamine and cyclic nucleotide levels in the cerebral ganglia of the freshwater bivalve Anodonta cygnea. Life Sci. 1979 Jul 16;25(3):291–297. doi: 10.1016/0024-3205(79)90298-4. [DOI] [PubMed] [Google Scholar]
  13. Stefano G. B., Leung M. Purification of opioid peptides from molluscan ganglia. Cell Mol Neurobiol. 1982 Dec;2(4):347–352. doi: 10.1007/BF00710854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stefano G. B., Martin R. Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (Bivalvia) and its proximity to dopamine-containing structures. Cell Tissue Res. 1983;230(1):147–153. doi: 10.1007/BF00216035. [DOI] [PubMed] [Google Scholar]
  15. Stefano G. B., Zukin R. S., Kream R. M. Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia). J Pharmacol Exp Ther. 1982 Sep;222(3):759–764. [PubMed] [Google Scholar]
  16. Stern A. S., Lewis R. V., Kimura S., Rossier J., Gerber L. D., Brink L., Stein S., Udenfriend S. Isolation of the opioid heptapeptide Met-enkephalin [Arg6,Phe7] from bovine adrenal medullary granules and striatum. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6680–6683. doi: 10.1073/pnas.76.12.6680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walczak S. A., Makman M. H., Gardner E. L. Acetylmethadol metabolites influence opiate receptors and adenylate cyclase in amygdala. Eur J Pharmacol. 1981 Jul 10;72(4):343–349. doi: 10.1016/0014-2999(81)90573-2. [DOI] [PubMed] [Google Scholar]
  18. Zukin R. S., Kream R. M. Chemical crosslinking of a solubilized enkephalin macromolecular complex. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1593–1597. doi: 10.1073/pnas.76.4.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES