Abstract
A new isoflavone, 7,2′,4′-trihydroxyisoflavone-4′-O-β-D-glucopyranoside has been isolated from the aerial part of Crotalaria sessiliflora. The isoflavone glucoside enhanced the proliferation of the MCF-7 human breast cancer cell line, which possesses estrogen receptor (ER) and responds to estrogen in culture. The estrogenic property of the isoflavone glucoside was blocked by the known ER antagonist tamoxifen, indicating the involvement of the ER. Furthermore, the isoflavone glucoside was found to enhance the acetylcholinesterase (AChE) activity of the rat neuronal cell line PC12 at low concentrations of nerve growth factor (NGF).
Keywords: Crotalaria sessiliflora; MCF-7 cell line; PC12 neuronal cell line; phytoestrogen; 7,2′,4′-trihydroxyisoflavone-4′-O-β-D-glucopyranoside
Full Text
The Full Text of this article is available as a PDF (157.6 KB).
References
- Adesanya S.A., O'Neill M.J., Robert M.F. Induced and constitutive iso.avonoids in Phaseolus mungo L.Legu-minosae. Z.Naturforch. 1984;39:888–893. [Google Scholar]
- Agrawal P.K. NMR spectroscopy in the structural elu-cidation of oligosaccharides and glycosides. Phytochemistry. 1992;31:3307–3330. doi: 10.1016/0031-9422(92)83678-R. [DOI] [PubMed] [Google Scholar]
- Deodato B., Altavilla D., Squadrito G., Campo G.M., Arlotta M., Minutoli L., Saitta A., Cucinotta D., Calapai G., Caputi A.P., Miano M., Squadrito F. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br.J.Pharm. 1999;128:1683–1690. doi: 10.1038/sj.bjp.0702973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene L., Rukenstein A. Regulation of acetyl-cholinesterase activity by nerve growth factor. J.Biol.Chem. 1981;256:6363–6367. [PubMed] [Google Scholar]
- Han D.H., Denison M.S., Tachibana H., Yamada K. Relationship between estrogen receptor-binding and estro-genic activities of environmental estrogens and suppression by flavonoids. Biosci.Biotechnol.Biochem. 2002;66:1479–1487. doi: 10.1271/bbb.66.1479. [DOI] [PubMed] [Google Scholar]
- Hattori T., Ohta Y. Induction of phenylalanine ammonia-lyase activation and isoflavone glucoside accumulation in suspension-cultured cells of red bean,Vigna angularis, by phytoalexin elicitors,vanadate,and elevation of medium pH. Plant Cell Physiol. 1985;26:1101–1110. [Google Scholar]
- Isoda H., Talorete T.P.N., Kimura M., Maekawa T., Inamori Y., Nakajima N., Seki H. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line PC12 by binding to the estrogen receptor. Cytotechnology. 2002;40:117–123. doi: 10.1023/A:1023903220539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones P.A., Baker V.A., Irwin A., Earl L.K. Interpretation of the in vitro proliferation response of MCF-7 cells to potential estrogens and non-estrogen substances. Toxicol.In Vitro. 1998;12:373–382. doi: 10.1016/S0887-2333(98)80006-4. [DOI] [PubMed] [Google Scholar]
- Karin M. The AP-1 complex and its role in transcrip-tional control by protein kinase C. In: Cohen P., Foulkes J.G, editors. The Hormonal Control Regulation of Gene Transcription. Amsterdam,The Netherlands: Elsevier Science Publishers; 1991. pp. 235–253. [Google Scholar]
- Katzenellenbogen B.S., Choi I., Delage-Mouroux R., Ediger T.R., Martini P.G.V., Montano M., Sun J., Weis K., Katzenellenbogen J.A. Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J.Steroid Biochem.Mol.Biol. 2000;74:279–285. doi: 10.1016/S0960-0760(00)00104-7. [DOI] [PubMed] [Google Scholar]
- Knight D., Eden J.A. A review of the clinical effect of phytoestrogens. Obstet.Gynecol. 1996;87:897–904. [PubMed] [Google Scholar]
- Kobayashi M., Ohta Y. Induction of stress metabo-lites formation in suspension cultures of Vigna angularis. Phytochemistry. 1983;22:1257–1261. doi: 10.1016/0031-9422(83)80235-0. [DOI] [Google Scholar]
- Kohara N., Lin T.S., Fukudome T., Khimura J., Sakamoto T., Kaji R., Shibasaki H. Patophysiology of weakness in a patient with congenital end-plate acetylcholinesterase de ciency. Muscle Nerve. 2002;25:585–592. doi: 10.1002/mus.10073. [DOI] [PubMed] [Google Scholar]
- Lamartiniere C.A., Moore J.B., Brown N.M., Thompson R., Hardin M., Barnes S. Genistein suppresses mammary cancer in rats. Carcinogenesis. 1995;16:2833–2840. doi: 10.1093/carcin/16.11.2833. [DOI] [PubMed] [Google Scholar]
- Mabry T.J., Markham K., Thomas M.B. The Systematic Identification of Flavonoids. Berlin: Springer-Verlag; 1970. [Google Scholar]
- Morito K., Hirose T., Kinjo J., Hirakawa T., Okawa M., No-hara T., Ogawa S., Inoue S., Muramatsu M., Masamune Y. Interaction of phytoestrogens with estrogen receptor a and b. Biol.Pharm.Bull. 2001;24:351–356. doi: 10.1248/bpb.24.351. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J.Immunol.Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- O 'Neill M.J., Adesanya S.A., Robert M.F. and Pantry I.R. 1986. Inducible iso.avonoids from the lima bean, Phaseolus lunatus. Phytochemistry 25: 1315-1322.
- Payne J., Jones C., Lakhani S., Kortenkamp A. Improving the reproducibility of the MCF-7 cell proliferation assay for the detection of xenoestrogens. Sci.Total Environ. 2000;248:51–62. doi: 10.1016/S0048-9697(99)00479-9. [DOI] [PubMed] [Google Scholar]
- Peterson G., Barnes S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993;22:335–345. doi: 10.1002/pros.2990220408. [DOI] [PubMed] [Google Scholar]
- Ratna W.N. Inhibition of estrogenic stimulation of gene expression by genistein. Life Sci. 2002;71:865–877. doi: 10.1016/S0024-3205(02)01770-8. [DOI] [PubMed] [Google Scholar]
- Sohrabji F., Greene L.A., Miranda R., Torran-Allerand C.D. Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. J.Neurobiol. 1994;25:974–988. doi: 10.1002/neu.480250807. [DOI] [PubMed] [Google Scholar]
- Soto A.M., Justicia H., Wray J., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from ''modified'' polystyrene. Environ.Health Perspect. 1991;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A.M., Sonnenchein C., Chung K.L., Fernandez M.F., Olea N., Serrano F.O. The E-SRCEEN assay as a tool to identify estrogen: an update on estrogenic environmental pollutants. Environ.Health Perspect. 1995;103:113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tham D.M., Gardner C., Haskell W.L. Potential health bene ts of dietary phytoestrogens: a review of the clinical,epidemiological,and mechanistic evidence. J.Clin. Endocrinol.Metab. 1998;83:2223–2235. doi: 10.1210/jc.83.7.2223. [DOI] [PubMed] [Google Scholar]
- White R., Jobing S., Hoare S.A., Sumpter J., Parker M.G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994;135:175–182. doi: 10.1210/en.135.1.175. [DOI] [PubMed] [Google Scholar]
- Woodward M.D. Phaseollin formation and metabolism in Phaseolus vulgaris. Phytochemistry. 1980;19:921–927. doi: 10.1016/0031-9422(80)85139-9. [DOI] [Google Scholar]
- Yanagihara K., Ito A., Toge T., Numoto M. Anti-proliferative effects of iso.avones on human cancer cell lines established from gastrointestinal tract. Cancer Res. 1993;53:5815–5821. [PubMed] [Google Scholar]
