Abstract
A soluble serotonin-binding protein was identified in a high-speed supernatant fraction of an osmotically shocked rat brain synaptosome (P2) preparation. The binding of serotonin was saturable (Bmax = 6.0 nmol per mg of protein) and was specific for serotonin and a few structurally related compounds including dopamine and norepinephrine. Binding of serotonin (1 microM) was inhibited approximately equal to 40% by chlorpromazine (10 microM). The affinity of serotonin for the binding protein was low in the crude extract (Kd = 1.7 X 10(-3)M). However, on purification by chromatography on a column of phenothiazine agarose, a higher affinity (Kd = 10(-5) M) binding component was also observed. The purified protein was greatly enriched in a polypeptide of Mr of 43,000 that comigrated on polyacrylamide gel with skeletal muscle actin. Muscle actin also bound serotonin, and the binding to actin was similar to that of the purified protein in both the specificity of the binding and the affinity for serotonin. It is likely that the serotonin-binding protein is identical to cytoplasmic G-actin or an actin-like protein of similar molecular weight.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S. Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and nonmuscle cells. Cell. 1982 Sep;30(2):349–350. doi: 10.1016/0092-8674(82)90232-x. [DOI] [PubMed] [Google Scholar]
- Adelstein R. S., Pato M. D., Sellers J. R., de Lanerolle P., Conti M. A. Regulation of actin-myosin interaction by reversible phosphorylation of myosin and myosin kinase. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):921–928. doi: 10.1101/sqb.1982.046.01.086. [DOI] [PubMed] [Google Scholar]
- Bennett J. P., Jr, Snyder S. H. Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol. 1976 May;12(3):373–389. [PubMed] [Google Scholar]
- Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., McGraw C. F., Somlyo A. V., Schweitzer E. S. How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 1980 Sep;76(5):459–470. [PubMed] [Google Scholar]
- Blitz A. L., Fine R. E. Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4472–4476. doi: 10.1073/pnas.71.11.4472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
- Enna S. J., Bennett J. P., Jr, Burt D. R., Creese I., Snyder S. H. Stereospecificity of interaction of neuroleptic drugs with neurotransmitters and correlation with clinical potency. Nature. 1976 Sep 23;263(5575):338–341. doi: 10.1038/263338a0. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Snyder S. H. Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. Proc Natl Acad Sci U S A. 1975 May;72(5):1899–1903. doi: 10.1073/pnas.72.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fine R. E., Bray D. Actin in growing nerve cells. Nat New Biol. 1971 Nov 24;234(47):115–118. doi: 10.1038/newbio234115a0. [DOI] [PubMed] [Google Scholar]
- Fowler V. M., Pollard H. B. Chromaffin granule membrane-F-actin interactions are calcium sensitive. Nature. 1982 Jan 28;295(5847):336–339. doi: 10.1038/295336a0. [DOI] [PubMed] [Google Scholar]
- Halaris A. E., DeMet E. M. Active uptake of [3H]5-HT by synaptic vesicles from rat brain. J Neurochem. 1978 Sep;31(3):591–597. doi: 10.1111/j.1471-4159.1978.tb07829.x. [DOI] [PubMed] [Google Scholar]
- Kenigsberg R. L., Côté A., Trifaró J. M. Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry. Neuroscience. 1982;7(9):2277–2286. doi: 10.1016/0306-4522(82)90138-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McClure W. O., Paulson J. C. The interaction of colchicine and some related alkaloids with rat brain tubulin. Mol Pharmacol. 1977 May;13(3):560–575. [PubMed] [Google Scholar]
- Murphy D. L. Substrate-selective monoamine oxidases--inhibitor, tissue, species and functional differences. Biochem Pharmacol. 1978;27(15):1889–1893. doi: 10.1016/0006-2952(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Nicklas W. J., Berl S. Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein. Nature. 1974 Feb 15;247(5441):471–473. doi: 10.1038/247471a0. [DOI] [PubMed] [Google Scholar]
- Nimni M. E. Vinblastine sulfate. Its reversible thermal aggregation and interaction with hydrophobic groups. Biochem Pharmacol. 1972 Feb 15;21(4):485–493. doi: 10.1016/0006-2952(72)90321-8. [DOI] [PubMed] [Google Scholar]
- Nishikawa M., Tanaka T., Hidaka H. Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature. 1980 Oct 30;287(5785):863–865. doi: 10.1038/287863a0. [DOI] [PubMed] [Google Scholar]
- Pollard H. B., Creutz C. E., Fowler V., Scott J., Pazoles C. J. Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):819–834. doi: 10.1101/sqb.1982.046.01.077. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Lin S. Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc Natl Acad Sci U S A. 1972 Feb;69(2):442–446. doi: 10.1073/pnas.69.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamir H., Bebirian R., Muller F., Casper D. Differences between intracellular platelet and brain proteins that bind serotonin. J Neurochem. 1980 Nov;35(5):1033–1044. doi: 10.1111/j.1471-4159.1980.tb07857.x. [DOI] [PubMed] [Google Scholar]
- Tamir H., Gershon M. D. Storage of serotonin and serotonin binding protein in synaptic vesicles. J Neurochem. 1979 Jul;33(1):35–44. doi: 10.1111/j.1471-4159.1979.tb11703.x. [DOI] [PubMed] [Google Scholar]
- Tamir H., Klein A., Rapport M. M. Serotonin binding protein:enhancement of binding by Fe2+ and inhibition of binding by drugs. J Neurochem. 1976 May;26(5):871–878. doi: 10.1111/j.1471-4159.1976.tb06467.x. [DOI] [PubMed] [Google Scholar]
- Tamir H., Liu K. P. On the nature of the interaction between serotonin and serotonin binding protein: effect of nucleotides, ions, and sulfhydryl reagents. J Neurochem. 1982 Jan;38(1):135–141. doi: 10.1111/j.1471-4159.1982.tb10864.x. [DOI] [PubMed] [Google Scholar]
- Tamir H., Rapport M. M. Is the serotonin binding protein (SBP) a soluble storage form for serotonin? Res Commun Chem Pathol Pharmacol. 1976 Feb;13(2):225–235. [PubMed] [Google Scholar]
- Thoa N. B., Wooten G. F., Axelrod J., Kopin I. J. Inhibition of release of dopamine- -hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B (hypogastric nerve stimulation-exocytosis-microtubules-microfilaments-guinea pig). Proc Natl Acad Sci U S A. 1972 Feb;69(2):520–522. doi: 10.1073/pnas.69.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
- Weiland G. A., Molinoff P. B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 1981 Jul 27;29(4):313–330. doi: 10.1016/0024-3205(81)90324-6. [DOI] [PubMed] [Google Scholar]
- Weir J. P., Frederiksen D. W. The isolation and characterization of actin from porcine brain. Arch Biochem Biophys. 1980 Aug;203(1):1–10. doi: 10.1016/0003-9861(80)90148-4. [DOI] [PubMed] [Google Scholar]
- Williams R. C., Jr, Lee J. C. Preparation of tubulin from brain. Methods Enzymol. 1982;85(Pt B):376–385. doi: 10.1016/0076-6879(82)85038-6. [DOI] [PubMed] [Google Scholar]
- Wilson L. Action of drugs on microtubules. Life Sci. 1975 Aug 1;17(3):303–309. doi: 10.1016/0024-3205(75)90476-2. [DOI] [PubMed] [Google Scholar]
- Wilson L., Bryan J., Ruby A., Mazia D. Precipitation of proteins by vinblastine and calcium ions. Proc Natl Acad Sci U S A. 1970 Jul;66(3):807–814. doi: 10.1073/pnas.66.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Youdim M. B., Green A. R., Bloomfield M. R., Mitchell B. D., Heal D. J., Grahame-Smith D. G. The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology. 1980 Mar;19(3):259–267. doi: 10.1016/0028-3908(80)90148-3. [DOI] [PubMed] [Google Scholar]
- Zechel K., Stadler H. Identification of actin in highly purified synaptic vesicles from the electric organ of Torpedo marmorata. J Neurochem. 1982 Sep;39(3):788–795. doi: 10.1111/j.1471-4159.1982.tb07961.x. [DOI] [PubMed] [Google Scholar]
