Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Nov;43(1-3):19–25. doi: 10.1023/B:CYTO.0000039909.28068.1e

Neural Precursor Cells from Adult Mouse Cerebral Cortex Differentiate into Both Neurons and Oligodendrocytes

Naoto Matsumura 1, Naoko Yoshida 1, Aya Ohta 1, Yusei Miyamoto 1, Tatsuhiro Hisatsune 1
PMCID: PMC3449595  PMID: 19003203

Abstract

Recent findings concerning adult neurogenesis in two selected structures of the mammalian brain, the olfactory bulb and dentate gyrus of the hippocampus, present the possibility that this mechanism of neurogenesis applies for all brain regions, including the cerebral neocortex. In this way, a small number of potential neural precursor cells may exist in the cerebral neocortex, but they do not normally differentiate into cortical neurons in vivo. It has, however, been reported recently that cycling cells isolated from non-neurogenic areas of adult rat cerebral cortex could generate neurons in vitro. In this study, we analyzed the lineage potential of cycling cells from the adult mouse neocortex. For the dissection of the cerebral cortex from the adult mouse, which is significantly smaller than that of the adult rat, we have modified the previous dissection protocol developed for the rat neocortex. As a result, cycling cells from adult mouse neocortex gave rise to neurons and oligodendrocytes, but not to astrocytes, whereas when the previous dissection method was used, cycling cells gave rise to neurons, oligodendrocytes and astrocytes. This discrepancy might stem from slight contamination of the dissected mouse neocortical tissue in the previous protocol used for the dissection of rat neocortex by cells from the surrounding subependymal zone, where typical adult neural stem cells exist. The results presented here will contribute to our understanding of the nature of cycling cells in the adult mammalian neocortex, and for which future stem cell research will provide new possibilities for cell replacement therapy to be used in the treatment of neurodegenerative conditions.

Keywords: adult mouse, brain dissection, lineage potential, neocortex, neural precursor cells

Full Text

The Full Text of this article is available as a PDF (269.1 KB).

References

  1. Bjorklund A., Lindvall O. Cell replacement therapies for central nervous system disorders. Nature Neurosci. 2000;3:537–544. doi: 10.1038/75705. [DOI] [PubMed] [Google Scholar]
  2. Bachoud-Levi A.C., Remy P., Jean-Paul N., Brugieres P., Lefaucheur J.P., Bourdet C., Baudic S., Gaura V., Maison P., Haddad B., Boisse M.F., Grandmougin T., Jeny R., Bartol-omeo P., Barba G.D., Degos J.D., Lisoboski F., Ergis A.M., Pailhous E., Cesaro P., Hantraye P., Peschanski M. Motor and cognitive improvement in patients with Hun-tington 's disease after neural transplantation. Lancet. 2000;356:1945–1946. doi: 10.1016/S0140-6736(00)03302-X. [DOI] [PubMed] [Google Scholar]
  3. Chiasson B.J., Tropepe V., Morshead C., der Kooy D. Adult mammalian forebrain ependymal and sube-pendymal cells demonstrate proliferative potential,but only subependymal cells have neural stem cell characteristics. J.Neurosci. 1999;19:4462–4472. doi: 10.1523/JNEUROSCI.19-11-04462.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dedeoglu A., Kubilus J.K., Jeitner T.M., Matson S.A., Bog-danov M., Kowall N.W., Matson W.R., Cooper A.J., Ratan R.R., Beal M.F., Hersch S., Ferrante R.J. Therapeutic effects of cystamine in a murine model of Hun-tington 's disease. J.Neurosci. 2002;22:8942–8950. doi: 10.1523/JNEUROSCI.22-20-08942.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gage F.H. Mammalian neural stem cells. Science. 2000;287:1433–1438. doi: 10.1126/science.287.5457.1433. [DOI] [PubMed] [Google Scholar]
  6. Gensert J., Goldman J.E. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J.Neurobiol. 2001;48:75–86. doi: 10.1002/neu.1043. [DOI] [PubMed] [Google Scholar]
  7. Kondo T., Ra M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289:1754–1757. doi: 10.1126/science.289.5485.1754. [DOI] [PubMed] [Google Scholar]
  8. Levison S.W., Young G., Goldman J.E. Cycling cells in the adult rat neocortex preferentially generate oligo-dendroglia. J.Neurosci.Res. 1999;57:435–446. doi: 10.1002/(SICI)1097-4547(19990815)57:4<435::AID-JNR3>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  9. Lim D.A., Tramontin A.D., Trevejo J.M., Herrera D.G., Garcia-Verdugo J., Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neu-rogenesis. Neuron. 2000;28:713–726. doi: 10.1016/S0896-6273(00)00148-3. [DOI] [PubMed] [Google Scholar]
  10. Nunes M.C., Roy N.S., Keyoung H.M., Goodman R.R., MckhannII G., Jiang L., Kang J., Nedergaard M., Goldman S.A. Identification and isolation of multi-potential neural progenitor cells from the subcortical white matter of the adult human brain. Nat.Med. 2003;9:439–447. doi: 10.1038/nm837. [DOI] [PubMed] [Google Scholar]
  11. Palmer T.D., Takahashi J., Gage F.H. The adult rat hippocampus contains primordial neuronal stem cells. Mol. Cell.Neurosci. 1997;8:389–404. doi: 10.1006/mcne.1996.0595. [DOI] [PubMed] [Google Scholar]
  12. Palmer T.D., Markakis E.A., Willhoite A.R., Safar F., Gage F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J.Neurosci. 1999;19:8487–8497. doi: 10.1523/JNEUROSCI.19-19-08487.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rakic P. Adult neurogenesis in mammals: an identity crisis. J.Neurosci. 2002;22:614–618. doi: 10.1523/JNEUROSCI.22-03-00614.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seaberg R., der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells,but the dentate gyrus contains restricted progenitors. J.Neurosci. 2002;22:1784–1793. doi: 10.1523/JNEUROSCI.22-05-01784.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shihabuddin L.S., Horner P.J., Ray J., Gage F.H. Adult spinal cord stem cells generate neurons after trans-plantation in the adult dentate gyrus. J.Neurosci. 2000;20:65–81. doi: 10.1523/JNEUROSCI.20-23-08727.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takahashi J., Palmer T., Gage F.H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J.Neurobiol. 1999;38:65–81. doi: 10.1002/(SICI)1097-4695(199901)38:1<65::AID-NEU5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  17. Temple S., Alvarez-Buylla A. Stem cells in the adult mammalian celtroa nervous system. Curr.Opin.Neurosci. 1999;9:135–141. doi: 10.1016/S0959-4388(99)80017-8. [DOI] [PubMed] [Google Scholar]
  18. Williams B.P., Read J., Price J. The generation of neurons and oligodendrocytes from a common precursor cell. Neuron. 1991;7:685–693. doi: 10.1016/0896-6273(91)90381-9. [DOI] [PubMed] [Google Scholar]
  19. Weiss S., Dunne C., Hewson J., Wohl C., Wheatley M., Pet-erson A., Reynolds B.A. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J.Neurosci. 1996;16:7599–7609. doi: 10.1523/JNEUROSCI.16-23-07599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamada K., Hisatsune T., Uchino S., Nakamura T., Kudo Y., Kaminogawa S. NMDA receptor mediated Ca2+ responses in neurons differentiated from p53 = immortalized Murine neural stem cells. Neurosci.Lett. 1999;264:165–167. doi: 10.1016/S0304-3940(99)00134-2. [DOI] [PubMed] [Google Scholar]
  21. Yu P., Oberto G. Alzheimer 's disease: transgenic mouse models and drug assessment. Pharmacol.Res. 2000;42:107–114. doi: 10.1006/phrs.2000.0670. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES