Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Feb;81(3):964–968. doi: 10.1073/pnas.81.3.964

Subcortical projections from ectopic neocortical neurons.

K F Jensen, H P Killackey
PMCID: PMC344960  PMID: 6583692

Abstract

There is a high degree of specificity in the efferent connections of the cerebral cortex. In the rodent neocortex, the characteristic band of corticospinal neurons within layer V is present at birth even though changes still occur in the areal distribution of these neurons. Disruption of neocortical development with ionizing radiation before, during, or after the production of neurons destined for layer V results in abnormally located corticospinal neurons. One abnormal location in which corticospinal neurons are found is in ectopic cell clusters beneath the cortical white matter bordering the dorso-medial aspect of the lateral ventricle. Corticospinal neurons only occur in these periventricular ectopias in adult rats irradiated on or before embryonic day 17. A second abnormal location of corticospinal neurons is between layer V and the pial surface. These scattered supragranular corticospinal neurons occur in all adult animals irradiated on embryonic days 16, 17, 18, or 19. The fact that neurons having an unusual position project to a subcortical target appropriate for one neocortical sublayer indicates that neither migratory path nor final position is essential to specifying a subcortical target. In addition, the fact that labeled corticospinal neurons are located in periventricular ectopias only when irradiation occurs on or before embryonic day 17 suggests that the initial projections of corticospinal neurons are determined early in their individual ontogeny prior to migration.

Full text

PDF
964

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J. Experimental reorganization of the cerebellar cortex. 3. Regeneration of the external germinal layer and granule cell ectopia. J Comp Neurol. 1973 May 15;149(2):153–180. doi: 10.1002/cne.901490203. [DOI] [PubMed] [Google Scholar]
  2. Berry M., Rogers A. W. The migration of neuroblasts in the developing cerebral cortex. J Anat. 1965 Oct;99(Pt 4):691–709. [PMC free article] [PubMed] [Google Scholar]
  3. Caviness V. S., Jr, Sidman R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol. 1973 Mar 15;148(2):141–151. doi: 10.1002/cne.901480202. [DOI] [PubMed] [Google Scholar]
  4. Caviness V. S., Jr, Yorke C. H., Jr Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: a study based on anterograde and retrograde methods. J Comp Neurol. 1976 Dec 15;170(4):449–459. doi: 10.1002/cne.901700405. [DOI] [PubMed] [Google Scholar]
  5. Clarke P. G., Cowan W. M. Ectopic neurons and aberrant connections during neural development. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4455–4458. doi: 10.1073/pnas.72.11.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. D'Amato C. J., Hicks S. P. Development of the motor system: effects of radiation on developing corticospinal neurons and locomotor function. Exp Neurol. 1980 Oct;70(1):1–23. doi: 10.1016/0014-4886(80)90002-3. [DOI] [PubMed] [Google Scholar]
  7. D'Amato C. J., Hicks S. P. Normal development and post-traumatic plasticity of corticospinal neurons in rats. Exp Neurol. 1978 Jul;60(3):557–569. doi: 10.1016/0014-4886(78)90010-9. [DOI] [PubMed] [Google Scholar]
  8. HICKS S., BROWN B. L., D'AMATO C. J. Regeneration and malformation in the nervous system, eye, and mesenchyme of the mammalian embryo after radiation injury. Am J Pathol. 1957 May-Jun;33(3):459–481. [PMC free article] [PubMed] [Google Scholar]
  9. Hicks S. P., D'Amato C. J. Cell migrations to the isocortex in the rat. Anat Rec. 1968 Mar;160(3):619–634. doi: 10.1002/ar.1091600311. [DOI] [PubMed] [Google Scholar]
  10. Hicks S. P., D'Amato C. J. Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase. Exp Neurol. 1977 Aug;56(2):410–420. doi: 10.1016/0014-4886(77)90357-0. [DOI] [PubMed] [Google Scholar]
  11. Ito M., Kawabata M., Shoji R. Responses of vibrissa-sensitive cortical neurons in normal and prenatally X-irradiated rat. J Neurophysiol. 1979 Nov;42(6):1711–1726. doi: 10.1152/jn.1979.42.6.1711. [DOI] [PubMed] [Google Scholar]
  12. Johnston M. V., Coyle J. T. Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res. 1979 Jul 6;170(1):135–155. doi: 10.1016/0006-8993(79)90946-6. [DOI] [PubMed] [Google Scholar]
  13. Lemmon V., Pearlman A. L. Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant. J Neurosci. 1981 Jan;1(1):83–93. doi: 10.1523/JNEUROSCI.01-01-00083.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leong S. K. Localizing the corticospinal neurons in neonatal, developing and mature albino rat. Brain Res. 1983 Apr 11;265(1):1–9. doi: 10.1016/0006-8993(83)91327-6. [DOI] [PubMed] [Google Scholar]
  15. Lipp H. P., Schwegler H. Improved transport of horseradish peroxidase after injection with a non-ionic detergent (Nonidet P-40) into mouse cortex and observations on the relationship between spread at the injection site and amount of transported label. Neurosci Lett. 1980 Oct 20;20(1):49–54. doi: 10.1016/0304-3940(80)90232-3. [DOI] [PubMed] [Google Scholar]
  16. Lund R. D., Mustari M. J. Development of the geniculocortical pathway in rats. J Comp Neurol. 1977 May 15;173(2):289–306. doi: 10.1002/cne.901730206. [DOI] [PubMed] [Google Scholar]
  17. Mesulam M. M. The blue reaction product in horseradish peroxidase neurohistochemistry: incubation parameters and visibility. J Histochem Cytochem. 1976 Dec;24(12):1273–1280. doi: 10.1177/24.12.63512. [DOI] [PubMed] [Google Scholar]
  18. O'Leary D. D., Cowan W. M. Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. J Comp Neurol. 1982 Dec 20;212(4):399–416. doi: 10.1002/cne.902120407. [DOI] [PubMed] [Google Scholar]
  19. Rakic P. Cell migration and neuronal ectopias in the brain. Birth Defects Orig Artic Ser. 1975;11(7):95–129. [PubMed] [Google Scholar]
  20. Reh T., Kalil K. Development of the pyramidal tract in the hamster. II. An electron microscopic study. J Comp Neurol. 1982 Feb 10;205(1):77–88. doi: 10.1002/cne.902050108. [DOI] [PubMed] [Google Scholar]
  21. Rosene D. L., Mesulam M. M. Fixation variables in horseradish peroxidase neurohistochemistry. I. The effect of fixation time and perfusion procedures upon enzyme activity. J Histochem Cytochem. 1978 Jan;26(1):28–39. doi: 10.1177/26.1.413864. [DOI] [PubMed] [Google Scholar]
  22. Simmons P. A., Lemmon V., Pearlman A. L. Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J Comp Neurol. 1982 Nov 1;211(3):295–308. doi: 10.1002/cne.902110308. [DOI] [PubMed] [Google Scholar]
  23. Stanfield B. B., O'Leary D. D., Fricks C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature. 1982 Jul 22;298(5872):371–373. doi: 10.1038/298371a0. [DOI] [PubMed] [Google Scholar]
  24. Wise S. P., Jones E. G. Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J Comp Neurol. 1977 Sep 15;175(2):129–157. doi: 10.1002/cne.901750202. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES