Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Nov;43(1-3):97–103. doi: 10.1023/B:CYTO.0000039898.44839.90

Involvement of Protein Kinase C Activation in L-Leucine-Induced Stimulation of Protein Synthesis in L6 Myotubes

Kazumi Yagasaki 1, Naoko Morisaki 1, Yoshiro Kitahara 1, Atsuhito Miura 1, Ryuhei Funabiki 1
PMCID: PMC3449606  PMID: 19003213

Abstract

Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C.

Keywords: L-Leucine, L6 myotube, protein kinase C inhibitor, protein synthesis

Full Text

The Full Text of this article is available as a PDF (92.8 KB).

References

  1. Ali A., Evans P.J. Utilization of amino acids in growing kidney proximal tubule cell cultures. Cell.Biol.Int. 2001;25:451–465. doi: 10.1006/cbir.2000.0667. [DOI] [PubMed] [Google Scholar]
  2. Anthony J.C., Yoshizawa F., Anthony T.G., Vary T.C., Jef-ferson L., Kimball S.R. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J.Nutr. 2000;130:2413–2419. doi: 10.1093/jn/130.10.2413. [DOI] [PubMed] [Google Scholar]
  3. Antony J.C., Anthony T.G., Kimball S., Jefferson L.S. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J.Nutr. 2001;131:856S–860S. doi: 10.1093/jn/131.3.856S. [DOI] [PubMed] [Google Scholar]
  4. Braiman L., Alt A., Kuroki T., Ohba M., Bak A., Tennenbaum T., Sampson S.R. Activation of protein kinase C f induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol.Cell Biol. 2001;21:7852–7861. doi: 10.1128/MCB.21.22.7852-7861.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper D.R., Konda T.S., Standaert M.L., Davis J.S., Pollet R., Farese R.V. Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes. J.Biol.Chem. 1987;262:3633–3639. [PubMed] [Google Scholar]
  6. Fernandez L., Flores-Morales A., Lahuna O., Sliva D., Nor-stedt G., Haldosen L.A., Mode A., Gustafsson J.Å. Desensitization of the growth hormone-include Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat 5)-signaling pathway requires protein synthesis and phospholipase C. Endocrinology. 1998;139:1815–1824. doi: 10.1210/en.139.4.1815. [DOI] [PubMed] [Google Scholar]
  7. Ishizuka T., Kajita K., Miura A., Ishizawa M., Kanoh Y., Itaya S., Kimura M., Muto N., Mune T., Morita H., Yasuda K. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase. Am.J. Physiol. 1999;276:E196–E204. doi: 10.1152/ajpendo.1999.276.1.E196. [DOI] [PubMed] [Google Scholar]
  8. Kimball S.R., Horetsky R., Jefferson L.S. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J.Biol. Chem. 1998;273:30945–30953. doi: 10.1074/jbc.273.47.30945. [DOI] [PubMed] [Google Scholar]
  9. Koshihara Y., Neichi T., Murota S., Lao A., Fujimoto Y., Tatsuno T. Selective inhibitor of 5-lipoxygenase by natural compounds isolated from Chinese plants,Artemisia rubripes Nakai. FEBS Lett. 1983;158:41–44. doi: 10.1016/0014-5793(83)80672-3. [DOI] [PubMed] [Google Scholar]
  10. Kramer I.M., van der Bend R.L., Tool A.T., van Blitterswijk W.J., Roos D., Vehoeven A.L. 1-O-hexadecyl-2-O-methylglycerol,a novel inhibitor of protein kinase C,inhibits the respiratory burst in human neutrophils. J.Biol.Chem. 1989;264:5876–5884. [PubMed] [Google Scholar]
  11. Lowry O.H., Rosebrough N.J., Farr A., Randall R.J. Protein measurement with the Folin Phenol reagent. J.Biol.Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  12. Mortimore G.E., Pösö A.R., Kadowaki M., Wert J.J., Jr Multiphasic control of hepatic protein degradation by regulatory amino acids. J.Biol.Chem. 1987;262:16322–16327. [PubMed] [Google Scholar]
  13. Patti M.-E., Brambilla E., Luzi L., Landaker E., Kahn C.R. Bidirectional modulation of insulin action by amino acids. J.Clin.Invest. 1998;101:1519–1529. doi: 10.1172/JCI1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peyrollier K., Hajduch E., Blair A.S., Hyde R., Hundal H.S. L-Leucine availability regulates phosphatidylinositol 3-kinase,p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of repamycin (mTOR)pathway in the L-Leucine-induced up-regulation of System A amino acid transport. Biochem.J. 2000;350:361–368. doi: 10.1042/0264-6021:3500361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pösö A.R., Wert J., Jr, Mortimore G.E. Multi-functional control by amino acids of deprivation-induced proteolysis in liver. J.Biol.Chem. 1982;257:12114–12120. [PubMed] [Google Scholar]
  16. Premecz G., Markovits A., Bagi G., Farkas T., Folders I. Phospholipase C and phospholipase A2 are involved in the antiviral activity of human interferon-α. FEBS Lett. 1989;249:257–260. doi: 10.1016/0014-5793(89)80635-0. [DOI] [PubMed] [Google Scholar]
  17. Rodemann H., Goldberg A.L. Arachidonic acid, prostaglandin E2 and F2 a in.uence rates of protein turnover in skeletal and cardiac muscle. J.Biol.Chem. 1982;257:1632–1638. [PubMed] [Google Scholar]
  18. Tischler M.E., Desautels M., Goldberg A.L. Does leucine,leucyl-tRNA,or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J.Biol.Chem. 1982;257:1613–1621. [PubMed] [Google Scholar]
  19. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc.Natl.Acad. Sci. 1968;61:477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yagasaki K., Saito K., Yamaguchi M., Funabiki R. Involvement of arachidonic acid metabolism in insulin-stimulated protein synthesis in cultured L6 myocytes. Agric.Biol. Chem. 1991;55:1449–1453. [Google Scholar]
  21. Yagasaki K., Kida Y., Miura Y., Funabiki R. Actions of branched chain amino acids on protein degradation in cultured muscle cells. In: Kobayashi T., Kitagawa Y., Okumura K, editors. Animal Cell Technology Basic andApplied Aspects. Dordrecht: Kluwer Academic Publishers; 1994. pp. 279–285. [Google Scholar]
  22. Yagasaki K., Morisaki-Tsuji N., Miura A., Funabiki R. .Possible involvement of phospholipase C and protein kinase C in stimulatory actions of L-leucine and its keto acid, a ketoisocaproic acid,on protein synthesis in RLC-16 hepatocytes. Cytotechnology. 2002;40:151–154. doi: 10.1023/A:1023988405518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yagasaki K., Hatano N., Fujii M., Miura Y., Funabiki R. Possible involvement of phospholipase A2 and cyclooxygenase in stimulatory action of L-histidine on pro-tein synthesis in L6 myotubes. Cytotechnology. 2002;40:155–160. doi: 10.1023/A:1023940522357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES