Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1997 Sep;24(3):243–252. doi: 10.1023/A:1007916930200

Recombinant Human Albumin in Cell Culture: Evaluation of Growth-Promoting Potential for NRK and SCC-9 Cells In Vitro

J Keenan, M Dooley, D Pearson, M Clynes
PMCID: PMC3449618  PMID: 22358768

Abstract

Serum-derived albumin has for a long time been used in cell culture media, but the exact role of albumin and/or impurities bound to albumin has not been precisely defined. In this study, recombinant human albumin was evaluated for its growth-promoting activity on two cell lines, NRK and SCC-9. For NRK cells, the recombinant human albumin was found to exert an inhibitory effect. The fact that fatty acid free HSA was also inhibitory while HSA fraction V was stimulatory suggested a role for fatty acids or some other bound moieties in growth stimulation by HSA fraction V. Addition of oleic acid, cholesterol, phosphatidylcholine, phosphatidylserine or a combination of these lipids, however, did not significantly improve the growth stimulating activity of either fatty acid free HSA or the recombinant human albumin. For SCC-9 cells, both recombinant human albumin and fatty acid free HSA showed slight stimulation (although they were not as active as HSA fraction V), suggesting that in some cell systems, the albumin molecule per se may promote cell growth and survival.

Keywords: recombinant human albumin, human serum albumin, growth-promoting activity, NRK, SCC-9, lipid loading

Full Text

The Full Text of this article is available as a PDF (101.0 KB).

References

  1. Anderson SN, Ruben Z, Fuller GC. Cell-mediated contraction of collagen lattices in serum-free medium. Vitro. 1990;26:61–66. doi: 10.1007/BF02624156. [DOI] [PubMed] [Google Scholar]
  2. Ashbrook JD, Spector AA, Fletcher JE. Medium chain fatty acid binding to human plasma albumin. J. Biol. Chem. 1972;247:7030–7042. [PubMed] [Google Scholar]
  3. Ashbrook JD, Spector AA, Santos EC. Long-chain fatty acid binding to human plasma albumin. J. Biol. Chem. 1975;250:2333–38. [PubMed] [Google Scholar]
  4. Barlian A, Bols N. Identification of bovine serum albumins that support salmonoid cell proliferation in the absence of serum. Vitro. 1991;27a:439–441. doi: 10.1007/BF02631141. [DOI] [PubMed] [Google Scholar]
  5. Brown JR and Shockley P (1982) In: ‘Lipid-Protein Interactions’ P Jost and OH Griffith (eds) Vol. 1, pp. 25–68, New York.
  6. Congote LF. Extraction of an erythrotropin-like factor from bovine serum albumin (Cohn fraction V) Vitro. 1987;23:361–366. doi: 10.1007/BF02620993. [DOI] [PubMed] [Google Scholar]
  7. Díaz-Gil JJ, Gavilanes JG, Sánchez G, García-Cañero R, García-Segura JM, Santamaría L, Trilla C, Escartín Identification of a liver growth factor as an albumin-bilirubin complex. Biochem. J. 1987;243:443–448. doi: 10.1042/bj2430443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drouin R, Harvey P, Richer CL, Remy-Prince S, Montplaisir S. Human serum albumin as a substitute for foetal calf serum in blast transformation assays and cytogenetic analyses. Cytobios. 1987;52:193–207. [PubMed] [Google Scholar]
  9. Gerschenson LE, Mead JF, Harary I, Haggerty DF., Jr Studies on the effects of essential fatty acids on growth rate, fatty acid composition, oxidative phosphorylation and respiratory control of HeLa cells in culture. Biochem. Biophys. Acta. 1967;131:42–49. doi: 10.1016/0005-2728(67)90029-1. [DOI] [Google Scholar]
  10. Glassy CM, Tharakan JP, Chau PC. Serum-free media in Hybridoma culture and monoclonal antibody production. Biotech. and Bioeng. 1988;32:1015–1028. doi: 10.1002/bit.260320809. [DOI] [PubMed] [Google Scholar]
  11. Ham RG. Albumin replacement by fatty acids in clonal growth of mammalian cells. Science. 1963;140:802–803. doi: 10.1126/science.140.3568.802. [DOI] [PubMed] [Google Scholar]
  12. Ham RG and McKeehan WL (1978) Media and growth requirements. In: WB Jakoby and IH Pastar (eds), Methods in Enzymology, pp. 44–93, Vol LVIII, Cell culture, Academic Press Inc. [DOI] [PubMed]
  13. Ham RG, St Clair JA, Webster C, Blau HM. Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. Vitro. 1988;24:833–844. doi: 10.1007/BF02623656. [DOI] [PubMed] [Google Scholar]
  14. Hatzinger PB, Stevens JL. Rat kidney proximal tubule defined medium: the roles of cholera toxin, extracellular calcium and serum in cell growth and expression of gamma-glutamyltransferase. Vitro. 1989;25:205–212. doi: 10.1007/BF02626180. [DOI] [PubMed] [Google Scholar]
  15. Hewlett G, Duvinski MS, Montalto JG. PENTEX EXCYTE Growth Enhancement Media Supplement as a Lipoprotein Additive for Mammalian Cell Culture. Miles Science J(Elkhart, IN) 1989;11(1):9–14. [Google Scholar]
  16. Hodgson J. BSE scares up a host of sourcing worries. Bio/technology. 1990;8:990. doi: 10.1038/nbt1190-990. [DOI] [Google Scholar]
  17. Iscove NN, Guilbert LJ, Weyman C. Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acids, lecithin and cholesterol. Exp. Cell. Res. 1980;126:121–126. doi: 10.1016/0014-4827(80)90476-0. [DOI] [PubMed] [Google Scholar]
  18. Jäger V, Lehmann J, Friedl P. Serum-free growth medium for the cultivation of a wide spectrum of mammalian cells in stirred bioreactors. Cytotechnology. 1988;1:319–329. doi: 10.1007/BF00365077. [DOI] [PubMed] [Google Scholar]
  19. Kane M (1990) Control of growth in pre-implantation embryos. IJMS January, 17–21.
  20. Keenan J, Doherty G, Clynes M. Use of reverse-phase HPLC to isolate bioactivity from BSA. J Experimental and Clinical Cancer Research. 1995;14:65–67. [Google Scholar]
  21. Keenan J, Doherty G, Clynes M. Separation of growth-stimulating activity of BSA fraction V from the bulk of albumin using Heparin Sepharose. Cytotechnology. 1996;19:63–72. doi: 10.1007/BF00749756. [DOI] [PubMed] [Google Scholar]
  22. Kiss C. Clonal growth and renewal of human myeloid leukemia cell lines (BRM and DD) in serum-free semi-solid culture. Blut. 1990;61:317–319. doi: 10.1007/BF01732886. [DOI] [PubMed] [Google Scholar]
  23. Kragh-Hansen U. Effects of aliphatic fatty acids on the binding of phenol red to Human Serum Albumin. Biochem. J. 1981;195:603–613. doi: 10.1042/bj1950603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin A, Clynes Acid phosphatase: Endpoint for in vitro toxicity tests. Vitro. 1991;27a:183–184. doi: 10.1007/BF02630912. [DOI] [PubMed] [Google Scholar]
  25. Miyasaki M, Bai L, Namba M. Extending effect of phospholipids, cholesterol, and ethanolamines on survival of adult rat hepatocytes in serum-free primary culture. Res. Exp. Med. 1991;191:77–83. doi: 10.1007/BF02576661. [DOI] [PubMed] [Google Scholar]
  26. Nilausen K. Role of fatty acids in growth-promoting effect of serum albumin on hamster cells in vitro. J Cell Physiol. 1978;96:1–14. doi: 10.1002/jcp.1040960102. [DOI] [PubMed] [Google Scholar]
  27. Peters T. Serum albumin. Adv. Clin. Chem. 1970;13:37–111. doi: 10.1016/S0065-2423(08)60385-6. [DOI] [PubMed] [Google Scholar]
  28. Shaklai N, Garlick RL, Bunn HF. Nonenzymatic glycosylation of Human Serum Albumin alters its conformation and function. J. Biol. Chem. 1984;259:3812–3817. [PubMed] [Google Scholar]
  29. Smith SM, Draper ME and Houghton RG (1990) Growth of BHK21 C113 Suspension Cells in Low Serum Medium Supplemented with PENTEX EX-CYTE III. European Society for Animal Cell Technology meeting, Avignon France, May 11.
  30. Soliman HA, Olesen H. Folic acid binding by Human Plasma albumin. Scand. J. Clin. Lab. Invest. 1976;36:299–304. [PubMed] [Google Scholar]
  31. Szejtli J. Cyclodextrins in Biotechnology. Stärke. 1986;38:388–390. [Google Scholar]
  32. Tigyi G, Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus Oocytes and neurite retraction in PC12 pheochromoctyoma cells. J. Biol. Chem. 1992;26:21360–21367. [PubMed] [Google Scholar]
  33. Unger WG. Binding of Prostaglandin to Human Serum Albumin. J. Pharm. Pharmacol. 1972;24:470–477. doi: 10.1111/j.2042-7158.1972.tb09034.x. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES