Abstract
Cell line cross-contamination is a phenomenon that arises as a result of the continuous cell line culture. It has been estimated that around 20% of the cell lines are misidentified, therefore it is necessary to carry out quality control tests for the detection of this issue. Since cell line cross-contamination discovery, different methods have been applied, such as isoenzyme analysis for inter-species cross-contamination; HLA typing, and DNA fingerprinting using short tandem repeat and a variable number of tandem repeat for intra-species cross-contamination. The cell banks in this sense represent the organizations responsible for guaranteeing the authenticity of cell lines for future research and clinical uses.
Keywords: Cell lines, Cross-contamination, Fingerprinting, Isoenzyme analysis, Short tandem repeat, Variable number tandem repeat
Acknowledgements
We thank Ms. Angela Barnie for checking the use of English in the manuscript.
Abbreviations
- AFLP
Amplified fragment length polymorphism
- MCB
Master cell bank
- STR
Short tandem repeat
- SBT
Sequence based typing
- SSO
Sequence specific oligonucleotide
- SSOP
Sequence specific oligonucleotide probe
- VNTR
Variable number tandem repeat
- WCB
Working cell bank
References
- AATB American Association of Tissue Banks (2002) Standards for tissue banking, 10th edn. American Association of Tissue Banks, McLean, VA
- ATCC Connection Newsletter (2000) Verify cell line identity with DNA profiling 21:1
- Borge OJ, Evers K. Aspects on properties, use and ethical considerations of embryonic stem cells—a short review. Cytotechnology. 2003;41:59–68. doi: 10.1023/A:1024862403630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buehring GC, Eby EA, Eby MJ. Cell line cross-contamination: how aware are mammalian cell culturists of the problem and how to monitor it. In Vitro Cell Dev Biol Anim. 2004;40:211–215. doi: 10.1290/1543-706X(2004)40<211:CLCHAA>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Cao K, Chopek M, Fernández-Vina MA. High and intermediate resolution DNA typing systems for class I HLA-A, B, C genes by hybridization with sequence-specific oligonucleotide probes (SSOP) Rev Immunogenet. 1999;1:177–208. [PubMed] [Google Scholar]
- Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R, Cortes JL, Catalina P, Barnie A, Concha A. Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol. 2005;68:456–466. doi: 10.1007/s00253-005-0062-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Defendi V, Billingham RE, Silvers WK, Moorhead P. Immunological and karyological criteria for identification of cell lines. J Natl Cancer Inst. 1960;25:359–385. [PubMed] [Google Scholar]
- Freshney RI. Culture of animal cells: a manual of basic techniques. New York: Wiley-Liss, Inc.; 1994. [Google Scholar]
- Gartler SM. Apparent HeLa cell contamination of human heteroploid cell lines. Nature. 1968;217:750–751. doi: 10.1038/217750a0. [DOI] [PubMed] [Google Scholar]
- Gerlach JA. Human lymphocyte antigen molecular typing: how to identify the 1250+ alleles out there. Arch Pathol Lab Med. 2001;126:281–284. doi: 10.5858/2002-126-0281-HLAMT. [DOI] [PubMed] [Google Scholar]
- Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–265. [Google Scholar]
- Healy L, Hunt C, Young L, Stacey GN. The UK Stem Cell Bank: its role as a public research centre providing access to well-characterised seed stocks of human stem cell lines. Adv Drug Deliv Rev. 2005;57:1981–1988. doi: 10.1016/j.addr.2005.07.019. [DOI] [PubMed] [Google Scholar]
- Hyslop LA, Armstrong L, Stojkovic M, Lako M. Human embryonic stem cells: biology and clinical implications. Expert Rev Mol Med. 2005;7:1–21. doi: 10.1017/S1462399405009804. [DOI] [PubMed] [Google Scholar]
- International Conference on Harmonisation of Technical requirements for registration of Pharmaceuticals for human use (1997) ICH harmonised tripartite guideline. Viral safety evaluation of biotechnology products derived from lines of human or animal origin, March
- Jeffreys AJ, Wilson V, Thein SL. Hypervariable “minisatellite” regions in human DNA. Nature. 1985a;314:67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
- Jeffreys AJ, Wilson V, Thein SL. Individual specific DNA fingerprints of human DNA. Nature. 1985b;316:76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
- Koreth J, O’Leary JJ, O’D McGee J. Microsatellites and PCR genomic analysis. J Pathol. 1996;178:239–248. doi: 10.1002/(SICI)1096-9896(199603)178:3<239::AID-PATH506>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer. 1999;83:555–563. doi: 10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- Masters JR, Thomson JA, Daly-Burns B, et al. Short tandem repeat profiling provide an international reference standard for human cell lines. Proc Natl Acad Sci USA. 2001;98:8012–8017. doi: 10.1073/pnas.121616198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2:315–319. doi: 10.1038/nrc775. [DOI] [PubMed] [Google Scholar]
- Rules and guidance for pharmaceutical manufactures and distributors. London: The Stationery Office; 2002. [Google Scholar]
- Nelson-Rees WA, Flandermeyer RA, Hawthorne PK. Distinctive banded marker chromosomes of human tumor cell lines. Int J Cancer. 1975;16:74–82. doi: 10.1002/ijc.2910160109. [DOI] [PubMed] [Google Scholar]
- Nelson-Rees WA, Flandermeyer RA. HeLa cultures defined. Science. 1976;191:96–98. doi: 10.1126/science.1246601. [DOI] [PubMed] [Google Scholar]
- Nelson-Rees WA, Daniels DW, Flandermeyer RR. Cross-contamination of cells in culture. Science. 1981;212:446–452. doi: 10.1126/science.6451928. [DOI] [PubMed] [Google Scholar]
- Nims RW, Shoemaker AP, Bauernschub MA, Rec LJ, Harbell JW. Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev Biol Anim. 1998;34:35–39. doi: 10.1007/s11626-998-0050-9. [DOI] [PubMed] [Google Scholar]
- Nomenclature for factors of the HLA system: update October 2000 (2001) Tissue Antigens 57:93–94 [DOI] [PubMed]
- Page-Bright B. Proving paternity-human leukocyte antigen test. J Forensic Sci. 1982;27:135–153. [PubMed] [Google Scholar]
- Rajalingam R, Ge P, Reed EF. A sequencing-based typing for HLA-DQA1 alleles. Hum Immunol. 2004;65:73–379. doi: 10.1016/j.humimm.2004.01.012. [DOI] [PubMed] [Google Scholar]
- Schaeffer WI. Terminology associated with cell, tissue, and organ culture, molecular biology, and molecular genetics. Tissue Culture Association Terminology Committee. In Vitro Cell Dev Biol. 1990;26:97–101. doi: 10.1007/BF02624162. [DOI] [PubMed] [Google Scholar]
- Stacey GN, Hoelzl H, Stephenson JR, Doyle A. Authentication of animal cell cultures by direct visualization of repetitive DNA, aldolase gene PCR and isoenzyme analysis. Biologicals. 1997;25:75–85. doi: 10.1006/biol.1996.0062. [DOI] [PubMed] [Google Scholar]
- Stacey GN. Cell contamination leads to inaccurate data: we must take action now. Nature. 2000;403:356. doi: 10.1038/35000394. [DOI] [PubMed] [Google Scholar]
- Stevanovic S. Structural basis of immunogenicity. Transpl Immunol. 2002;10:133–136. doi: 10.1016/S0966-3274(02)00059-X. [DOI] [PubMed] [Google Scholar]
- Tamaki K, Jeffreys AJ. Human tandem repeat sequences in forensic DNA typing. Leg Med (Tokyo) 2005;7:244–250. doi: 10.1016/j.legalmed.2005.02.002. [DOI] [PubMed] [Google Scholar]
- United Kingdom Coordinating Committee on Cancer Research (2000) Br J Cancer 82:1495–1509 [DOI] [PMC free article] [PubMed]
- Welsh K, Bunce M. Molecular typing for the MHC with PCR-SSP. Rev Immunogenet. 1999;1:157–176. [PubMed] [Google Scholar]
- Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet. 1987;51:269–288. doi: 10.1111/j.1469-1809.1987.tb01062.x. [DOI] [PubMed] [Google Scholar]
- World Health Organization (1987) Acceptability of cell substrates for production of biologicals. Technical Report Series. WHO, Geneva [PubMed]
