Abstract
A balanced supplementation method was applied to develop a serum and protein- free medium supporting hybridoma cell batch culture. The aim was to improve systematically the initial formulation of the medium to prevent limitations due to unbalanced concentrations of vitamins and amino acids. In a first step, supplementation of the basal formulation with 13 amino acids, led to an increase of the specific IgA production rate from 0.60 to 1.07 pg cell−1 h−1. The specific growth rate remained unchanged, but the supplementation enabled maintenance of high cell viability during the stationary phase of batch cultures for some 70 h. Since IgA production was not growth- related, this resulted in an approximately4-fold increase in the final IgA concentration, from 26.6 to 100.2 mgl−1. In a second step, the liposoluble vitamins E and K3 were added to the medium formulation. Although this induced a slightly higher maximal cell concentration, it was followed by a sharp decline phase with the specific IgA production rate falling to 0.47 pg cell−1 h−1. However, by applying a second cycle of balanced supplementation with amino acids this decline phase could be reduced and a high cell viability maintained for over 300 h of culture. In this vitamin- and amino acid- supplemented medium, the specific IgA production rate reached a value of 1.10 pg cell−1h−1 with a final IgA concentration of 129.8 mgl−1. The latter represents an increase of approximately5-fold compared to the non- supplemented basal medium.
Keywords: Amino acids, Balanced supplementation, Hybridoma cell culture, Medium optimization, Vitamins
Full Text
The Full Text of this article is available as a PDF (258.3 KB).
References
- Baker H., DeAngelis B., Frank O. Vitamins and other metabolites in various sera commonly used for cell culturing. Experientia. 1988;44:1007–1010. doi: 10.1007/BF01939904. [DOI] [PubMed] [Google Scholar]
- Banik G.G., Heath C.A. High-density hybridoma perfusion culture - limitation vs inhibition. Appl. Biochem. Biotechnol. 1996;61:211–229. doi: 10.1007/BF02787797. [DOI] [PubMed] [Google Scholar]
- Barman H.K., Rajput Y.S. Serum-free and serum-containing media for hybridoma culture. J. Sci. Industr. Res. 1993;52:803–807. [Google Scholar]
- Barnes D., Sato G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 1980;102:255–270. doi: 10.1016/0003-2697(80)90151-7. [DOI] [PubMed] [Google Scholar]
- Chen Z., Ke Y., Chen Y. A serum-free medium for hybridoma cell culture. Cytotechnology. 1993;11:169–174. doi: 10.1007/BF00749866. [DOI] [PubMed] [Google Scholar]
- Chua F., Oh S.K.W., Yap M., Teo W.K. Enhanced IgG production in eRDF media with and without serum. Methods. 1994;167:109–119. doi: 10.1016/0022-1759(94)90080-9. [DOI] [PubMed] [Google Scholar]
- Ducommun P., Bolzonella I., Rhiel M., Pugeaud P., Von Stockar U., Marison I.W. On-line determination of animal cell concentration. Biotechnol. Bioeng. 2001;72:515–522. doi: 10.1002/1097-0290(20010305)72:5<515::AID-BIT1015>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Duval D., Demangel C., Munier-Jolain K., Miossec S., Geahel I. Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. influence of the amino acid supply. Biotechnol. Bioeng. 1991;38:561–570. doi: 10.1002/bit.260380602. [DOI] [PubMed] [Google Scholar]
- Engström W., Zetterberg A. The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J. Cell. Physiol. 1984;120:233–241. doi: 10.1002/jcp.1041200218. [DOI] [PubMed] [Google Scholar]
- Evans V.J., Bryant J.C., Kerr H.A., Schilling E.L. Chemically defined media for cultivation of long-term cell strains from four mammalian species. Exp. Cell. Res. 1964;36:439–474. doi: 10.1016/0014-4827(64)90302-7. [DOI] [PubMed] [Google Scholar]
- Geaugey V., Duvall D., Geahel I., Marc A., Engasser J.M. Influence of amino acids on hybridoma cell viability and anti-body secretion. Cytotechnology. 1989;2:119–129. doi: 10.1007/BF00386144. [DOI] [PubMed] [Google Scholar]
- Hewlett G. Strategies for optimising serum-free media. Cytotechnology. 1991;5:3–14. doi: 10.1007/BF00365530. [DOI] [PubMed] [Google Scholar]
- Higushi K. Cultivation of animal cells in chemically defined media, a review. Adv. Appl. Microbiol. 1973;16:111–136. doi: 10.1016/S0065-2164(08)70025-X. [DOI] [PubMed] [Google Scholar]
- Hiller G.W., Clark D.S., Blanch H.W. Transient responses of hybridoma cells in continuous-culture to step changes in amino-acid and vitamin concentrations. Biotechnol. Bioeng. 1994;44:303–321. doi: 10.1002/bit.260440308. [DOI] [PubMed] [Google Scholar]
- Jo E.-C., Park H.-J., Park J.-M., Kim K.-H. Balanced nutrient fortification enables high-density hybridoma cell culture in batch culture. Biotechnol. Bioeng. 1990;36:717–722. doi: 10.1002/bit.260360709. [DOI] [PubMed] [Google Scholar]
- Kurano S., Kurano N., Leist C., Fiechter A. Utilization and stability of vitamins in serum-containing and serum-free media in CHO cell culture. Cytotechnology. 1990;4:243–250. doi: 10.1007/BF00563784. [DOI] [PubMed] [Google Scholar]
- Leist C.H., Meyer H.-P., Fiechter A. Potential and problems of animal cells in suspension culture. J. Biotechnol. 1990;15:1–46. doi: 10.1016/0168-1656(90)90049-H. [DOI] [PubMed] [Google Scholar]
- Marquis C.P., Barford J.P., Harbour C., Fletcher A. Carbohydrate and amino acid metabolism during batch culture of a human lymphoblastoid cell line, BTSN6. Cytotechnology. 1996;21:121–132. doi: 10.1007/BF02215662. [DOI] [PubMed] [Google Scholar]
- Marquis C.P., Barford J.P., Harbour C. Amino acid metabolism during batch culture of a murine hybridoma, AFP-27. Cytotechnology. 1996;21:111–120. doi: 10.1007/BF02215661. [DOI] [PubMed] [Google Scholar]
- Renard J.M., Spagnoli R., Mazier C., Salles M.F., Mandine E. Evidence that antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnol. Lett. 1988;10:91–96. doi: 10.1007/BF01024632. [DOI] [Google Scholar]
- Reuveny S., Velez D., Macmillan J.D., Miller L. Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods. 1986;86:53–59. doi: 10.1016/0022-1759(86)90264-4. [DOI] [PubMed] [Google Scholar]
- Shacter E. Serum-free media for bulk culture of hybridoma cell and the preparation of monoclonal antibodies. TIBTECH. 1989;7:248–253. [Google Scholar]
- Simpson N.H., Singh R.P., Perani A., Goldenzon C., Al-Rubeai M. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 1998;59:90–98. doi: 10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Stoll T.S., Mühlethaler K., von Stockar U., Marison I.W. Systematic improvement of a chemically-defined protein-free medium for hybridoma growth and monoclonal antibody production. J. Biotechnol. 1996;45:111–123. doi: 10.1016/0168-1656(95)00153-0. [DOI] [PubMed] [Google Scholar]
- Xie L.Z., Wang D.I.C. Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnol. Bioeng. 1994;43:1164–1174. doi: 10.1002/bit.260431122. [DOI] [PubMed] [Google Scholar]
- Zetterberg A., Engström W. Glutamine and the regulation of DNA replication and cell multiplication in fibroblasts. J. Cell. Physiol. 1981;108:365–373. doi: 10.1002/jcp.1041080310. [DOI] [PubMed] [Google Scholar]