Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Nov 30;46(2-3):97–107. doi: 10.1007/s10616-005-0301-5

Toxic Concentrations of Exogenously Supplied Methylglyoxal in Hybridoma Cell Culture

Benjamin M Roy 1,2, Tiffany D Rau 1, R Robert Balcarcel 1,
PMCID: PMC3449709  PMID: 19003265

Abstract

Concentrations at which methylglyoxal, a by-product of cellular metabolism, can be toxic to hybridoma cell cultures were determined using exogenously supplied doses. Trypan blue cell counts of 6-well cultures incubated for 24 h with various methylglyoxal concentrations revealed inhibition of cell growth at 300 μM and higher, with a median inhibitory concentration of 490±20 μM. The primary mode of death was apoptosis, as assessed by chromatin condensation, and the effects of methylglyoxal were observed to be complete by approximately eight hours. Yet, the impact of methylglyoxal was a function of the rate of dosing; stepwise addition of MG during the first 6 h of incubation inhibited growth but caused much less cell death than a comparable bolus dose. Inhibition of cellular metabolism by MG was found to coincide with inhibition of cell growth, with a comparable median inhibitory concentration of 360±20 μM. The effects on viable cell density and metabolism were both linear at doses approaching zero, with lowest observable effect levels of 54 and 77 μM, respectively. These results provide quantitative estimates for concentrations of methylglyoxal that may be inhibitory to biopharmaceutical-producing cell lines.

Keywords: Apoptosis, Hybridoma, Lactate, Methylglyoxal, Toxicity

Full Text

The Full Text of this article is available as a PDF (336.8 KB).

Glossary

AOEB

acridine orange/ethidium bromide

CHO

Chinese Hamster ovary

LOEL

lowest observable effect level

HSD

honest significant difference

IC50

median inhibitory concentration

IMDM

Iscove’s modified Dulbecco’s Medium

MG

methylglyoxal

References

  1. Ayoub F.M., Allen R.E., Thornalley P.J. Inhibition of proliferation of human leukemia 60-cells by methylglyoxal in vitro. Leukemia Res. 1993;17:397–401. doi: 10.1016/0145-2126(93)90094-2. [DOI] [PubMed] [Google Scholar]
  2. Baynes J.W., Thorpe S.R. Role of oxidative stress in diabetic complications – a new perspective on an old paradigm. Diabetes. 1999;48:1–9. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  3. Chaplen F.W., Fahl W.E., Cameron D.C. Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA. 1998;95:5533–5538. doi: 10.1073/pnas.95.10.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaplen F.W.R. Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: a review. Cytotechnology. 1998;26:173–183. doi: 10.1023/A:1007953628840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaplen F.W.R., Fahl W.E., Cameron D.C. Effect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture. Cytotechnology. 1996;22:33–42. doi: 10.1007/BF00353922. [DOI] [PubMed] [Google Scholar]
  6. Cruz H.J., Freitas C.M., Alves P.M., Moreira J.L., Carrondo M.J.T. Effects of ammonia and lactate on growthmetabolismand productivity of BHK cells. Enzyme Microb. Technol. 2000;27:43–52. doi: 10.1016/S0141-0229(00)00151-4. [DOI] [PubMed] [Google Scholar]
  7. Duval D., Demangel C., Miossec S., Geahel I. Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma. 1992;11:311–322. doi: 10.1089/hyb.1992.11.311. [DOI] [PubMed] [Google Scholar]
  8. Hassell T., Gleave S., Butler M. Growth inhibition in animal cell culture – the effect of lactate and ammonia. Appl. Biochem. Biotechnol. 1991;30:29–41. doi: 10.1007/BF02922022. [DOI] [PubMed] [Google Scholar]
  9. Kalapos M.P. Methylglyoxal in living organisms – chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett. 1999;110:145–175. doi: 10.1016/S0378-4274(99)00160-5. [DOI] [PubMed] [Google Scholar]
  10. Kang Y.B., Edwards L.G., Thornalley P.J. Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNAG(1) growth arrest and induction of apoptosis. Leukemia Res. 1996;20:397–405. doi: 10.1016/0145-2126(95)00162-X. [DOI] [PubMed] [Google Scholar]
  11. Kromenaker S.J., Srienc F. Effect of lactic-acid on the kinetics of growth and antibody-production in a murine hybridoma – secretion patterns during the cell-cycle. J. Biotechnol. 1994;34:13–34. doi: 10.1016/0168-1656(94)90162-7. [DOI] [PubMed] [Google Scholar]
  12. Lao M.S., Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog. 1997;13:688–691. doi: 10.1021/bp9602360. [DOI] [PubMed] [Google Scholar]
  13. Lo T.W.C., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions – a Kinetic and Mechanistic Study with N-alpha-acetylarginineN-alpha-acetylcysteineand N-alpha acetyllysineand bovine serum-albumin. J. Biol. Chem. 1994;269:32299–32305. [PubMed] [Google Scholar]
  14. Ludemann I., Portner R., Markl H. Effect of Nh3 on the cell-growth of a hybridoma cell-line. Cytotechnology. 1994;14:11–20. doi: 10.1007/BF00772191. [DOI] [PubMed] [Google Scholar]
  15. Mastrangelo A.J., Hardwick J.M., Zou S.F., Betenbaugh M.J. Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol. Bioeng. 2000;67:555–564. doi: 10.1002/(SICI)1097-0290(20000305)67:5<555::AID-BIT6>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  16. Mercille S., Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
  17. Miller W.M., Wilke C.R., Blanch H.W. Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture. Bioproc. Eng. 1988;3:113–122. [Google Scholar]
  18. Newland M., Kamal M.N., Greenfield P.F., Nielsen L.K. Ammonia inhibtion of hybridomas propagated in batch, fed-batch, and continuous culture. Biotechnol. Bioeng. 1994;43:434–438. doi: 10.1002/bit.260430512. [DOI] [PubMed] [Google Scholar]
  19. Omasa T., Higashiyama K., Shioya S., Suga K. Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation. Biotechnol. Bioeng. 1992;39:556–564. doi: 10.1002/bit.260390511. [DOI] [PubMed] [Google Scholar]
  20. Ozturk S.S., Riley M.R., Palsson B.O. Effects of ammonia and lactate on hybridoma growth, metabolism and antibody-production. Biotechnol. Bioeng. 1992;39:418–431. doi: 10.1002/bit.260390408. [DOI] [PubMed] [Google Scholar]
  21. Patel S.D., Papoutsakis E.T., Winter J.N., Miller W.M. The lactate issue revisited: Novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Biotechnol. Prog. 2000;16:885–892. doi: 10.1021/bp000080a. [DOI] [PubMed] [Google Scholar]
  22. Plas D.R., Thompson C.B. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab. 2002;13:74–78. doi: 10.1016/s1043-2760(01)00528-8. [DOI] [PubMed] [Google Scholar]
  23. Rae C., Bernersprice S.J., Bulliman B.T., Kuchel P.W. Kinetic-analysis of the human erythrocyte glyoxalase system using H-1-Nmr and a computer-model. Eur. J. Biochem. 1990;193:83–90. doi: 10.1111/j.1432-1033.1990.tb19307.x. [DOI] [PubMed] [Google Scholar]
  24. Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–146. doi: 10.1007/s001250051591. [DOI] [PubMed] [Google Scholar]
  25. Thornalley P.J. Modification of the glyoxalase system in human red blood-cells by glucose in vitro. Biochem. J. 1988;254:751–755. doi: 10.1042/bj2540751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thornalley P.J. Advances in glyoxalase research – glyoxalase expression in malignancy, antiproliferative effects of methylglyoxal, glyoxalase-i inhibitor diesters and S-d-lactoylglutathioneand methylglyoxal-modified protein-binding and endocytosis by the advanced glycation end-product receptor. Crit. Rev. Oncol./Hematol. 1995;20:99–128. doi: 10.1016/1040-8428(94)00149-n. [DOI] [PubMed] [Google Scholar]
  27. Herreweghe F., Mao J.Q., Chaplen F.W.R., Grooten J., Gevaert K., Vandekerckhove J., Vancompernolle K. Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methyl glyoxal-derived AGE. Proc. Natl. Acad. Sci. USA. 2002;99:949–954. doi: 10.1073/pnas.012432399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vander Jagt D.L., Hunsaker L.A. Methylglyoxal metabolism and diabetic complications: roles of aldose reductaseglyoxalase-1, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chemico-Biol. Int. 2003;143:341–351. doi: 10.1016/s0009-2797(02)00212-0. [DOI] [PubMed] [Google Scholar]
  29. Walsh G. Biopharmaceutical benchmarks. Nat. Biotechnol. 2000;18:831–833. doi: 10.1038/78720. [DOI] [PubMed] [Google Scholar]
  30. Yan H., Harding J.J. Inactivation and loss of antigenicity of esterase by sugars and a steroid. BBA-Mol. Basis. Dis. 1999;1454:183–190. doi: 10.1016/s0925-4439(99)00035-6. [DOI] [PubMed] [Google Scholar]
  31. Yang Y., Balcarcel R.R. 96-well plate assay for sublethal metabolic activity. ASSAY Drug Develop. Technol. 2004;2:353–361. doi: 10.1089/adt.2004.2.353. [DOI] [PubMed] [Google Scholar]
  32. Zhou W.C., Rehm J., Europa A., Hu W.S. Alteration of mammalian cell metabolism by dynamic nutrient feeding. Cytotechnology. 1997;24:99–108. doi: 10.1023/A:1007945826228. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES