Abstract
In order to achieve the goal of developing extracorporeal liver support devices, it is necessary to optimise bioprocess environment such that viability and function are maximised. Optimising culture medium composition and controlling the constitution of the cellular microenvironment within the bioreactor have for many years been considered vital to achieving these aims. Coupled to this is the need to understand apoptosis, the prime suspect in the demise of animal cultures, including those of hepatocytes. Results presented here show that absent nutrients including glucose and amino acids play a substantial part in the induction of apoptosis. The use of chemical apoptosis inhibitors was utilised to investigate key components of hepatic apoptosis where caspases, predominantly caspase 8, were implicated in staurosporine (STS)-induced HepZ apoptosis. Caspase 9 and 3 activation although recorded was of less significance. Interestingly, these results were not consistent with those of mitochondrial membrane depolarisation where inhibition of caspase activation appeared to drive depolarisation. Inhibition of mitochondrial permeability transition and use of anti-oxidants was unsuccessful in reducing apoptosis, caspase activation and mitochondrial membrane depolarisation. In further studies, the anti-apoptotic gene bcl-2 was over-expressed in HepZ, resulting in a cell line that was more robust and resistant to death induced by glucose and cystine deprivation and treatment with STS. Bcl-2 did not however show significant cytoprotectivity where apoptosis was stimulated by deprivation of glutamine and serum. Overall, results indicated that although apoptosis can be curbed by use of chemical inhibitors and genetic manipulation, their success is dependent on apoptotic stimuli.
Keywords: Apoptosis, Bcl-2, Caspases, Hepatocytes, HepZ, Mitochondria membrane potential, Staurosporine
Full Text
The Full Text of this article is available as a PDF (654.5 KB).
References
- Albright C.D., Borgman C., Craciunescu C.N. Activation of a caspase-dependent oxidative damage response mediates TGFbeta-1 apoptosis in rat hepatocytes. Exp. Mol. Pathol. 2003;74:256–261. doi: 10.1016/S0014-4800(03)00002-9. [DOI] [PubMed] [Google Scholar]
- Al-Rubeai M., Oh S.K.W., Musaheb R., Emery A.N. Modified cellular metabolism in hybridomas subjected to hydrodynamic stresses. Biotechnol. Lett. 1990;12:323. doi: 10.1007/BF01024425. [DOI] [Google Scholar]
- Al-Rubeai M., Singh R.P., Goldman M.H., Emery A.N. Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol. Bioeng. 1995;45:463–472. doi: 10.1002/bit.260450602. [DOI] [PubMed] [Google Scholar]
- Antonsson B., Conti F., Ciavatta A., Montessuit S., Lewis S., Martinou I., Bernasconi L., Bernard A., Mermod J.J., Mazzei G., Maundrell K., Gambale F., Sadoul R., Martinou J.C. Inhibition of bax channel-forming activity by Bcl-2. Science. 1997;277:370–372. doi: 10.1126/science.277.5324.370. [DOI] [PubMed] [Google Scholar]
- Aoshiba K., Yasui S., Nishimura K., Nagai A. Thiol depletion induces apoptosis in cultured lung fibroblasts. Am. J. Resp. Cell Mol. Biol. 1999;21:54–64. doi: 10.1165/ajrcmb.21.1.3411. [DOI] [PubMed] [Google Scholar]
- Blatt N.B., Glick G.D. Signaling Pathways and effector mechanisms pre-programmed cell death. Bioorg. Med. Chem. 2001;9:1371–1384. doi: 10.1016/s0968-0896(01)00041-4. [DOI] [PubMed] [Google Scholar]
- Blom W.M., Bont H.J., Meirjerman I., Mulder G.J., Nagelkerke J.F. Prevention of cycloheximide-induced apoptosis in hepatocytes by adenosine and by caspase inhibitor. Biochem. Pharmacol. 1999;58:1891–1898. doi: 10.1016/S0006-2952(99)00268-3. [DOI] [PubMed] [Google Scholar]
- Borner C. Diminished cell proliferation associated with the death protective activity of Bcl-2. J. Biol. Chem. 1996;271:12695–12698. doi: 10.1074/jbc.271.22.12695. [DOI] [PubMed] [Google Scholar]
- Bratch K., Al-Rubeai M. Culture of primary hepatocytes within a flat hollow fibre cassette for potential use as a component of a bioartificial liver support system. Biotechnol. Lett. 2001;23:137–141. doi: 10.1023/A:1010387612109. [DOI] [Google Scholar]
- Budd R.C. Activation–induced cell death. Curr. Opin. Immunol. 2001;13:356–362. doi: 10.1016/S0952-7915(00)00227-2. [DOI] [PubMed] [Google Scholar]
- Cain K., Inayat-Hussain S.H., Couet C., Cohen G.M. A cleavage-site-directed inhibitor of interleukin-1β-convering enzyme-like proteases inhibits apoptosis in primary cultures of rat hepatocytes. Biochem. J. 1996;314:27–32. doi: 10.1042/bj3140027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiou S.K., White E. Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology. 1998;244:108–118. doi: 10.1006/viro.1998.9077. [DOI] [PubMed] [Google Scholar]
- Chung J.D., Sinskey A.J., Stephanopoulos G. Growth factor and Bcl-2 mediated survival during abortive proliferation of hybridoma cell line. Biotechnol. Bioeng. 1998;57:164–171. [PubMed] [Google Scholar]
- Colombaioni L., Colombini L., Garcia-Gil M. Role of mitochondria in serum withdrawal-induced apoptosis of immortalized neuronal precursors. Dev. Brain Res. 2002;134:93–102. doi: 10.1016/S0165-3806(01)00326-1. [DOI] [PubMed] [Google Scholar]
- Dalili M., Sayles G., Ollis D.F. Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotechnol. Bioeng. 1989;36:74–82. doi: 10.1002/bit.260360110. [DOI] [PubMed] [Google Scholar]
- Fussenegger M., Bailey J.E. Molecular regulation of cell cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotechnol. Prog. 1998;14:807–833. doi: 10.1021/bp9800891. [DOI] [PubMed] [Google Scholar]
- Fussenegger M., Fassnacht D., Schwartz R., Zanghi J.A., Graf M., Bailey J.E., Portner R. Regulated over-expression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivations. Cytotechnology. 2000;32:45–61. doi: 10.1023/A:1008168522385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galle P.R., Hofman W.J., Walczak H. Involvement of the CD95/APO-1/fas) receptor and ligand in liver damage. J. Exp. Med. 1995;182:1223–1230. doi: 10.1084/jem.182.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths E.J. Mitochondria – potential role in cell life and death. Cardivasc. Res. 2000;46:24–27. doi: 10.1016/S0008-6363(00)00020-1. [DOI] [PubMed] [Google Scholar]
- Gupta S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 2001;69:2957–2964. doi: 10.1016/s0024-3205(01)01404-7. [DOI] [PubMed] [Google Scholar]
- Hamabe W., Fukushima N., Yoshida A., Ueda H. Serum-free induced neuronal apoptosis-like cell death is independent of caspase activity. Mol. Brain Res. 2000;78:186–191. doi: 10.1016/S0169-328X(00)00074-7. [DOI] [PubMed] [Google Scholar]
- Hatano E., Bradham C.A., Stark A., Iimuro Y., Lemarsters J.J., Brenner D. The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes. J. Biol. Chem. 2000;276:11814–11823. doi: 10.1074/jbc.275.16.11814. [DOI] [PubMed] [Google Scholar]
- Hockenberry D., Nunez G.L., Milliman C., Schreiber R.D., Korsmeyeer S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348:334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
- Huang D.C.S., O’Reilly L., Strasser A., Cory S. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. The EMBO J. 1997;16:4628–4638. doi: 10.1093/emboj/16.15.4628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishaque A., Al-Rubeai M. Role of Ca2+Mg2+ and K+ ion in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture. Apoptosis. 1999;4:335–355. doi: 10.1023/A:1009643204200. [DOI] [PubMed] [Google Scholar]
- Ishaque A., Al-Rubeai M. Role of vitamins in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture. Apoptosis. 2002;7:231–239. doi: 10.1023/A:1015343616059. [DOI] [PubMed] [Google Scholar]
- Jones R.A., Johnson V.L., Buck N.R., Dobrota M., Hinton R.H., Chow S.C., Kass G.E. Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. Hepatology. 1998;27:1632–1642. doi: 10.1002/hep.510270624. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Dallaporta B., RescheRigon M. The mitochondrial death/life regulators in apoptosis and necrosis. Annu. Rev. Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Zamzami N., Susin S.A. Mitochondrial control of apoptosis. Immunol. Today. 1997;18:44–51. doi: 10.1016/S0167-5699(97)80014-X. [DOI] [PubMed] [Google Scholar]
- Lacronique V., Mignon A., Fabre M., Viollet B., Rouquet N., Molina T., Porteu A., Henrion A., Bouscary D., Varlet P., Joulin V., Khan A. Bcl-2 protects from lethal hepathic apoptosis induced by an anti-Fas antibody in mice. Nat. Med. 1996;2(1):80–86. doi: 10.1038/nm0196-80. [DOI] [PubMed] [Google Scholar]
- Mastrangelo A.J. Inhibition of apoptosis in mammalian cell culture: the biotechnological relevance of limiting cell death. In: Al-Rubeai M., editor. Cell Engineering I. Netherlands: Kluwer Academic Publishers; 1999. pp. 162–185. [Google Scholar]
- Mayer M., Noble M. N-acetyl-l-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc. Natl. Acad. Sci. USA. 1994;91:7496–500. doi: 10.1073/pnas.91.16.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGowan A.J., Fernandes R., Samali A., Cotter T.G. Anti-oxidants and apoptosis. Biochem. Soc. Trans. 1996;24:229–233. doi: 10.1042/bst0240229. [DOI] [PubMed] [Google Scholar]
- Mecille S., Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
- Minamikawa T., Williams D.A., Bowser D.N., Nagley P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp. Cell Res. 1999;246:26–37. doi: 10.1006/excr.1998.4290. [DOI] [PubMed] [Google Scholar]
- Murray K., Ang C.E., Gull K., Hickman J.A., Dickson A.J. NSO myeloma cell death: influence of Bcl-2 over-expression. Biotechnol. Bioeng. 1996;51:298–304. doi: 10.1002/(SICI)1097-0290(19960805)51:3<298::AID-BIT5>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- O’Reilly L.A., Huang D.C.S., Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 1996;15:6979–6990. [PMC free article] [PubMed] [Google Scholar]
- Parone P.A., James D., Martinou J.C. Mitochondria: regulating the inevitable. Biochemie. 2002;84:105–111. doi: 10.1016/S0300-9084(02)01380-9. [DOI] [PubMed] [Google Scholar]
- Rabinovitz M. The pleiotypic response to amino-acid deprivation is the result of interactions between components of the glycolysis and protein-synthesis pathways. FEBS Lett. 1992;302:113–116. doi: 10.1016/0014-5793(92)80418-G. [DOI] [PubMed] [Google Scholar]
- Rao L., White E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr. Opin. Genet. Dev. 1997;7:52–58. doi: 10.1016/S0959-437X(97)80109-8. [DOI] [PubMed] [Google Scholar]
- Robb-Gaspers L.D., Rutter G.A., Burnett P., Hajnóczky G., Denton R.M, Thomas A.P. Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim. Biophys. Acta. 1998;1366:17–32. doi: 10.1016/s0005-2728(98)00118-2. [DOI] [PubMed] [Google Scholar]
- Salvioli S., Barbi C., Dobrucki J., Moretti L., Pinti M., Pedrazzi J., Pazienza T.L., Bobyleva V., Franceshi C., Cossarizza A. Opposite role of changes in mitochondrial membrane potential in diffrent apoptotic processes. FEBS Lett. 2000;469:186–190. doi: 10.1016/S0014-5793(00)01266-7. [DOI] [PubMed] [Google Scholar]
- Sanfelui A., Stephanopoulos G. Effect of glutamine limitation on the death of attached Chinese hamster ovary cells. Biotechnol. Bioeng. 1999;64:46–53. [PubMed] [Google Scholar]
- Simpson N.H., Milner A.E., Al-Rubeai Prevention of hybridoma cell death by Bcl-2 during suboptimal culture conditions. Biotechnol. Bioeng. 1997;54:1–16. doi: 10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Simpson N.H., Singh R.P., Emery A.N., Al-Rubeai M. Bcl-2 over-expression reduces growth rate and prolongs G1 phase in continuous chemostat culture of hybridoma cells. Biotechnol. Bioeng. 1999;64:174–186. doi: 10.1002/(SICI)1097-0290(19990720)64:2<174::AID-BIT6>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Simpson N.H., Singh R.P., Perani A., Goldenzon C., Al-Rubeai M. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic deathwhich is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 1998;59:90–98. doi: 10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Singh R.P., Al-Rubeai M., Gregory C.D., Emery A.N. Cell death in bioreactors: a role for apoptosis. Biotechnol. Bioeng. 1994;44:720–726. doi: 10.1002/bit.260440608. [DOI] [PubMed] [Google Scholar]
- Singh R.P., Emery A.N., Al-Rubeai M. Enhancement of survivability of mammalian cells by over-expression of the apoptotic–suppressor gene bcl-2. Biotechnol. Bioeng. 1996;52:166–175. doi: 10.1002/(SICI)1097-0290(19961005)52:1<166::AID-BIT17>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Skulachev V.P. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett. 1996;97:7–10. doi: 10.1016/0014-5793(96)00989-1. [DOI] [PubMed] [Google Scholar]
- Susin S.A., Zamzami N., Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta. 1998;1366:151–165. doi: 10.1016/s0005-2728(98)00110-8. [DOI] [PubMed] [Google Scholar]
- Suzuki E., Terada S., Ueda H. Establishing apoptosis resistant cell lines for improving protein production of cell culture. Cytotechnology. 1997;23:55–59. doi: 10.1023/A:1007942929800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talley A.K., Dewhurst S., Perry S.W., Dollard S.C. Tumour necrosis factor alpha-induced apoptosis inhuman neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and CrmA. Mol. Cell Biol. 1995;15:2359–2366. doi: 10.1128/mcb.15.5.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tey B.T., Singh R.P., Piredda L., Piancentini M., Al-Rubeai Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J. Biotechnol. 2000a;79:147–159. doi: 10.1016/S0168-1656(00)00223-6. [DOI] [PubMed] [Google Scholar]
- Tey B.T., Singh R.P., Piredda L., Piancentini M., Al-Rubeai Influence of Bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol. Bioeng. 2000b;68:31–43. doi: 10.1002/(SICI)1097-0290(20000405)68:1<31::AID-BIT4>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Tsujimoto Y., Finger L.R., Yunis J., Nowell P.C., Croce C.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–1099. doi: 10.1126/science.6093263. [DOI] [PubMed] [Google Scholar]
- Vaux D.L., Cory S., Adams J.M. Bcl-2gene promotes haemopoietic cell survival and cooperates with c-mycto immortalise pre-B cells. Nature. 1998;335:440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]
- Woo M., Hakem A., Elia A.J., Hakem R., Duncan G.S., Patterson B.J., Mak T.W. In vivo evidence that caspase-3 is required for fas-mediated apoptosis of hepatocytes. J. Immunol. 1999;163:4911–4916. [PubMed] [Google Scholar]
- Xie L.Z., Wang D.I.C. Energy metabolism and TAP balance in animal cell cultivating using a stoichiometically based reaction network. Biotechnol. Bioeng. 1996;52:591–601. doi: 10.1002/(SICI)1097-0290(19961205)52:5<591::AID-BIT6>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Hirsch T., Susin S.A., Masse B., Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996;384:53–57. doi: 10.1016/0014-5793(96)00280-3. [DOI] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssiére J.L., Petit P.X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 1995;181:1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X.D., Gillespie S.K., Hersey P. Staurosporine induces apoptosis of melanoma by both caspase-dependent and – independent apoptotic pathways. Mol. Cancer Therapeutics. 2004;3(2):187–197. [PubMed] [Google Scholar]