Abstract
Lateral plate mesoderm is native to the developing limb while other cells such as neurons extend migratory axonal processes from the neural tube. Questions regarding how axons migrate to their proper location in the developing limb remain unanswered. Extracellular matrix molecules expressed in developing limb cartilages, such as the versican proteoglycan, may function as inhibitory cues to nerve migration, thus facilitating its proper patterning. In the present study, a method is described for co-culture of neural tissue with high density micromass preparations of mouse limb mesenchyme in order to investigate neurite patterning during limb chondrogenesis in vitro. Comparison of hdf (heart defect) mouse limb mesenchyme, which bears an insertional mutation in the versican proteoglycan core protein, with wild type demonstrated that the described technique provides a useful method for transgenic analysis in studies of chondrogenic regulation of neurite patterning. Differentiating wild type limb mesenchyme expressed cartilage characteristic Type II collagen and versican at 1 day and exhibited numerous well defined cartilage foci by 3 days. Wild type neurites extended into central regions of host cultures between 3 and 6 days and consistently avoided versican positive chondrogenic aggregates. Wild type neural tubes cultured with hdf limb mesenchyme, which does not undergo cartilage differentiation in a wild type pattern, showed that axons exhibited no avoidance characteristics within the host culture. Results suggest that differentiating limb cartilages may limit migration of axons thus aiding in the ultimate patterning of peripheral nerve in the developing limb.
Keywords: Cartilage, Chondrogenesis, hdf, Limb development, Nerve migration, Versican
Full Text
The Full Text of this article is available as a PDF (482.6 KB).
References
- Akers R.M., Moszher D.F., Lilien J.E. Promotion of retinal neurite outgrowth by substratum-bound fibronectin. Dev. Biol. 1981;86:179–188. doi: 10.1016/0012-1606(81)90328-6. [DOI] [PubMed] [Google Scholar]
- Aspberg A., Binkert C., Ruoslahti E. The versican C-type lectin domain recognized the adhesion protein tenascin-R. Proc. Natl Acad. Sci. USA. 1995;92:10590–10594. doi: 10.1073/pnas.92.23.10590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aspberg A., Miura R., Bourdoulous S., Shiminaka M., Heinegard D., Schachner M., Ruoslahti E., Yamaguchi Y. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc. Natl Acad. Sci. USA. 1997;94:10116–10121. doi: 10.1073/pnas.94.19.10116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalepakis G., Stoykova A., Wihnholdsm J., Tremblay P., Gruss P. Pax: gene regulators in the developing nervous system. J. Neurobiol. 1993;24:1367–1384. doi: 10.1002/neu.480241009. [DOI] [PubMed] [Google Scholar]
- Dent J.A., Klymkowsky M.W. Whole Mount Analysis of Cytoskeletal Reorganization and Function During Oogenesis and Early Embryogenesis in Xenopus. The Cell Biology of Fertilization. San Diego: Academic Press; 1987. pp. 63–103. [Google Scholar]
- Fedtsova N., Perris R., Turner E.E. Sonic hedgehog regulated the position of the trigeminal ganglia. Dev. Biol. 2003;261:456–469. doi: 10.1016/S0012-1606(03)00316-6. [DOI] [PubMed] [Google Scholar]
- Fidler P.S., Schuette K., Asher R.A., Dobbertin A., Thornton S.R., Calle-Patino Y., Muir E., Levine J.M., Geller H.M., Rogers J.H., Faissner A., Fawcett J.W. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 1999;19:8778–8788. doi: 10.1523/JNEUROSCI.19-20-08778.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillotte D.M., Fox P.L., Mjaatvedt C.H., Hoffman S., Capehart A.A. An in vitro method for analysis of chondrogenesis in limb mesenchyme from individual transgenic (hdf) embryos. Meth. Cell Sci. 2003;25:97–104. doi: 10.1007/s11022-004-9803-3. [DOI] [PubMed] [Google Scholar]
- Gunderson R.W. Response of sensory neurites and growth cones to patterned substrata of laminin and fibronectin in vitro. Dev. Biol. 1987;121:423–431. doi: 10.1016/0012-1606(87)90179-5. [DOI] [PubMed] [Google Scholar]
- Hall B.K., Miyake T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays. 2000;22:138–147. doi: 10.1002/(SICI)1521-1878(200002)22:2<138::AID-BIES5>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Harris S.J., Jahoda C.A.B. A correlation between versican and neurofilament expression patterns during the development and adult cycling of rat vibrissa follicles. Mech. Develop. 2001;101:227–231. doi: 10.1016/s0925-4773(00)00561-x. [DOI] [PubMed] [Google Scholar]
- Isoagi Z., Aspberg A., Keene D.R., Ono R.N., Reinhardt D.P., Sakai L.Y. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J. Biol. Chem. 2002;227:4565–4572. doi: 10.1074/jbc.M110583200. [DOI] [PubMed] [Google Scholar]
- Johnson G.D., Davidson R.S., McNamee K.C., Russell G., Goodwin D., Holborow E.J. Fading of immunofluorescence during microscopy: A study of the phenomenon and its remedy. J. Immunol. Methods. 1982;55:231–242. doi: 10.1016/0022-1759(82)90035-7. [DOI] [PubMed] [Google Scholar]
- Kawashima H., Hirose M., Hirose J., Nagakubo D., Plaas A.H.K., Miyasaka M. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 2000;45:35448–354546. doi: 10.1074/jbc.M003387200. [DOI] [PubMed] [Google Scholar]
- Kimata K., Oike Y., Tani K., Shinomura T., Yamagata M., Uritani M., Suzuki S. A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J. Biol. Chem. 1986;261:13517–13525. [PubMed] [Google Scholar]
- Krull C.E., Kulesa P.M. Embryonic explant for studies of cell migration. In: de Pablo F., Ferrus A., Stern C.D., editors. Cellular and Molecular Procedures in Developmental Biology. New York: Academic Press; 1998. pp. 145–159. [DOI] [PubMed] [Google Scholar]
- Laird P.W. Simplified mammalian DNA isolation procedure. Nucleic Acid Res. 1991;19:4293. doi: 10.1093/nar/19.15.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landolt R.M., Vaughan L., Winterhalter K.H., Zimmerman D.R. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest migration and axon outgrowth. Development. 1995;121:2303–2312. doi: 10.1242/dev.121.8.2303. [DOI] [PubMed] [Google Scholar]
- LeBaron R.G., Zimmerman D.R., Ruoslahti E. Hyaluronate binding properties of versican. J. Biol. Chem. 1992;15:10003–10010. [PubMed] [Google Scholar]
- Letourneau P.C. Cell substratum adhesion of neurite growth cones and its role in neurite elongation. Exp. Cell Res. 1979;124:127–138. doi: 10.1016/0014-4827(79)90263-5. [DOI] [PubMed] [Google Scholar]
- Mariani F.V., Martin GR. Deciphering skeletal patterning: clues from the limb. Nature. 2003;423:319–325. doi: 10.1038/nature01655. [DOI] [PubMed] [Google Scholar]
- Mjaatvedt C.H., Yamamura H., Capehart A.A., Turner D., Markwald R.R. The Cspg2 genedisrupted in the hdf mutantis required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 1998;201:1–11. doi: 10.1006/dbio.1998.9001. [DOI] [PubMed] [Google Scholar]
- Niswander L., Martin G.R. FGF-4 and BMP-2 have opposite effects on limb growth. Nature. 1992;361:68–71. doi: 10.1038/361068a0. [DOI] [PubMed] [Google Scholar]
- Oakley R.A., Tosney K.W. Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev. Biol. 1991;147:187–206. doi: 10.1016/S0012-1606(05)80017-X. [DOI] [PubMed] [Google Scholar]
- Oakley R.A., Lasky C.J., Erickson C.A., Tosney KW. Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo. Development. 1994;120:103–114. doi: 10.1242/dev.120.1.103. [DOI] [PubMed] [Google Scholar]
- Olin A.I., Mörgelin M., Sasaki T., Timpl R., Heinegård D., Aspberg A. The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin binding domain. J. Biol. Chem. 2001;276:1253–1261. doi: 10.1074/jbc.M006783200. [DOI] [PubMed] [Google Scholar]
- Owens E.M., Solursh M. In vitro histogenic capacities of limb mesenchyme from various stage mouse embryos. Dev. Biol. 1981;88:297–311. doi: 10.1016/0012-1606(81)90173-1. [DOI] [PubMed] [Google Scholar]
- Probstmeier R., Stichel C.C., Muller H.W., Asou H., Pesheva P. Chondroitin sulfates expressed on oligodendrocytes derived tenascin-R are involved in neural cell recognition. Functional implications during CNS development and regeneration. J. Neurosci. Res. 2000;60:21–36. doi: 10.1002/(SICI)1097-4547(20000401)60:1<21::AID-JNR3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Schramm C.A., Solursh M. The formation of premuscle masses during chick wing bud development. Anat. Embryol. 1990;182:235–247. doi: 10.1007/BF00185517. [DOI] [PubMed] [Google Scholar]
- Schramm C.A., Reiter R.S., Solursh M. Role for short-range interactions in the formation of cartilage and muscle masses in transfilter micromass cultures. Dev. Biol. 1994;163:467–479. doi: 10.1006/dbio.1994.1163. [DOI] [PubMed] [Google Scholar]
- Shinomura T., Jensen K.L., Yamagata M., Kimata K., Solursh M. The distribution of mesenchyme proteoglycan (PG-M) during wing bud outgrowth. Anat. Embryol. 1990;181:227–233. doi: 10.1007/BF00174617. [DOI] [PubMed] [Google Scholar]
- Shinomura T., Zako M., Ito K., Ujita M., Kimata K. The gene structure and organization of mouse PG-M, a large chondroitin sulfate proteoglycan. J. Biol. Chem. 1995;270:10328–10333. doi: 10.1074/jbc.270.17.10328. [DOI] [PubMed] [Google Scholar]
- Snow H.E., Riccio L.M., Mjaatvedt C.H., Hoffman S., Capehart A.A. Versican expression during skeletal/ joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limb. Anat. Rec. 2005;282A:95–105. doi: 10.1002/ar.a.20151. [DOI] [PubMed] [Google Scholar]
- Solursh M., Ahrens P.B., Reiter R.S. A tissue culture analysis of the steps in limb chondrogenesis. In Vitro. 1978;14:51–61. doi: 10.1007/BF02618173. [DOI] [PubMed] [Google Scholar]
- Williams D.R., Jr., Presar A.R., Richmond A.T., Mjaatvedt C.H., Hoffman S., Capehart A.A. Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochem. Biophys. Res. Comm. 2005;334:960–966. doi: 10.1016/j.bbrc.2005.06.189. [DOI] [PubMed] [Google Scholar]
- West C.M., Lanza R., Rosenbloom J., Lowe M., Holtzer H. Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts. Cell. 1979;17:491–501. doi: 10.1016/0092-8674(79)90257-5. [DOI] [PubMed] [Google Scholar]
- Yamagata M., Yamada K.M., Yoneda M., Suzuki S., Kimata K. Chondroitin sulfate proteoglycan (PG-M-like proteoglycan) is involved in the binding of hyaluronic acid to cellular fibronectin. J. Biol. Chem. 1986;15:13526–13535. [PubMed] [Google Scholar]
- Yamagata M., Suzuki S., Akiyama S.K., Yamada K.M., Kimata K. Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J. Biol. Chem. 1989;264:8012–8018. [PubMed] [Google Scholar]
- Yamamura H., Zhang M., Markwald R.R., Mjaatvedt C.H. A heart segmental defect in the anteriorposterior axis of a transgenic mutant mouse. Dev. Biol. 1997;186:58–72. doi: 10.1006/dbio.1997.8559. [DOI] [PubMed] [Google Scholar]
- Yang B.L., Yang B.B., Erwin M., Ang L.C., Finkelstein J., Yee A.J.M. Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro. Life Sci. 2003;73:3399–3413. doi: 10.1016/j.lfs.2003.06.018. [DOI] [PubMed] [Google Scholar]
- Zhang M., Kim H.J., Marshall H., Gendron-Maguire M., Lucas D.A., Baron A., Gudas L.J., Gridley T., Krumlauf R., Grippo J.F. Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development. 1994;120:2431–2442. doi: 10.1242/dev.120.9.2431. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Cao L., Kiani C.G., Yang B.L., Yang B.B. The G3 domain of versican inhibits mesenchymal chondrogenesis via the epidermal growth factor-like motifs. J. Biol. Chem. 1998;273:33054–33063. doi: 10.1074/jbc.273.49.33054. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Cao L., Kiani C., Yang B.L., Hu W., Yang B.B. Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J. Cell Biochem. 1999;73:445–457. doi: 10.1002/(SICI)1097-4644(19990615)73:4<445::AID-JCB3>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]