Abstract
Recent evidence suggests that several unknown or ill-characterized factors strongly influence cell growth and function in culture. Isolating these factors is necessary in order to maximize culture productivities. Methylglyoxal (MG), a potent protein and nucleic acid modifying agent, has been identified as a player in the signaling pathways associated with cell death and is known to be detrimental to cultured cells. This compound is produced in all mammalian systems by spontaneous phosphate elimination from glycolytic pathway intermediates. A kinetic model that qualitatively describes the cellular distribution of protein-associated MG in the absence of enzymatic adduct formation predicted far lower levels of reversibly bound MG than measured in cultured CHO cells. This suggests that the targeted modification of proteins through enzymatically mediated mechanisms is a significant sink for cellular methylglyoxal. The model was validated with measurements of carbon flux through the glyoxalase pathway to d-lactic acid, a unique end product of MG metabolism in mammalian systems. Fluxes to d-lactic acid of up to 16.8 mmol ml-packed cells−1 day−1 were measured with CHO cells grown in batch culture or 100-fold more than found in normal tissues.
Keywords: CHO cell, Inhibitor, Metabolism, Metabolite, Methylglyoxal
Full Text
The Full Text of this article is available as a PDF (295.1 KB).
References
- Ahmed M.U., Brinkmann Frye E., Degenhardt T.P., Thorpe S.R., Baynes J.W. N-ε-(carboxyethyl)lysinea product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 1997;324:565–70. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alberts G., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3. New York: Garland Publishing Inc.; 1994. [Google Scholar]
- Anderson D.C., Goochee C.F. The effect of ammonia on O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol. Bioeng. 1995;47:96–105. doi: 10.1002/bit.260470112. [DOI] [PubMed] [Google Scholar]
- Bibila T.A., Robinson D.K. In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol. Prog. 1995;11:1–13. doi: 10.1021/bp00031a001. [DOI] [PubMed] [Google Scholar]
- Bourajjaj M., Stehouwer C.D.A., Hinsbergh V.W.M., Schalkwijk C.G. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans. 2003;31(6):1400–1402. doi: 10.1042/BST0311400. [DOI] [PubMed] [Google Scholar]
- Chaplen F.W.R., Cameron D.C., Fahl W.E. Effect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture. Cytotechnology. 1996a;22:33–42. doi: 10.1007/BF00353922. [DOI] [PubMed] [Google Scholar]
- Chaplen F.W.R., Fahl W.E., Cameron D.C. Method for determination of free extracellular and intracellular methylglyoxal in animal cells grown in culture. Anal. Biochem. 1996b;238:171–178. doi: 10.1006/abio.1996.0271. [DOI] [PubMed] [Google Scholar]
- Chaplen F.W.R., Fahl W.E., Cameron D.C. Evidence of high levels of methylglyoxal in Chinese hamster ovary cells grown in culture. Proc. Natl. Acad. Sci. USA. 1998;95:5533–5538. doi: 10.1073/pnas.95.10.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton D.J., Migliorine M., Pourmotabbed T., Guha M.K. Optimization of the efficiency of the glyoxalase pathway. Biochemistry. 1988;27(19):7376–84. doi: 10.1021/bi00419a031. [DOI] [PubMed] [Google Scholar]
- Du J., Suzuki H., Nagase F., Akhand A.A., Yokoyama T., Miyata T., Kurokawa K., Nakashima I. Methylglyoxal induces apoptosis in Jurkat leukemia cells by activating c-Jun N-terminal kinase. J. Cell. Biochem. 2000;77(2):333–44. doi: 10.1002/(SICI)1097-4644(20000501)77:2<333::AID-JCB15>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Godbout J.P., Pesavento J., Hartman M.E., Manson S.R., Freund G.G. Methyglyoxal enhances cisplatin-induced cytotoxicity by activating PKC-δ. J. Biol. Chem. 2001;277(4):2554–2561. doi: 10.1074/jbc.M100385200. [DOI] [PubMed] [Google Scholar]
- Jocelyn P.C. Biochemistry of the SH Group. New York: Academic Press; 1977. [Google Scholar]
- Lo T.W.C., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. J. Biol. Chem. 1994;269:32299–32305. [PubMed] [Google Scholar]
- Makita Z., Vlassara H., Cerami A., Bucala R. Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 1992;267(8):5133–5138. [PubMed] [Google Scholar]
- Martins A.M., Mendes P., Cordeiro C., Freire A.P. In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur. J. Biochem. 2001;268(14):3930–3936. doi: 10.1046/j.1432-1327.2001.02304.x. [DOI] [PubMed] [Google Scholar]
- McLellan A.C., Phillips S.A., Thornalley P.J. Fluorimetric assay of D-lactate. Anal. Biochem. 1992;206(1):12–6. doi: 10.1016/S0003-2697(05)80004-1. [DOI] [PubMed] [Google Scholar]
- Miller W.M., Blanch H.W. Regulation of animal cell metabolism in bioreactors. In: Ho C.S, Wang D.I.C., editors. Animal Cell Bioreactors, Ch. 6. Boston: Butterworth-Heinemann; 1991. pp. 119–157. [DOI] [PubMed] [Google Scholar]
- Papsoulis A., Al-Abed Y., Bucala R. Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end-product. Biochemistry. 1995;34:648–655. doi: 10.1021/bi00002a032. [DOI] [PubMed] [Google Scholar]
- Richard J.P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry. 1991;30:4581–4585. doi: 10.1021/bi00232a031. [DOI] [PubMed] [Google Scholar]
- Sakamoto H., Mashima T., Kizaki A., Dan S., Hashimote Y., Naito M., Tsuruo T. Glyoxalase I is involved in the resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood. 2000;95(10):3214–3218. [PubMed] [Google Scholar]
- Shamsi F.A., Partal A., Sady C., Glomb M.A., Nagaraj R.H. Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. J. Biol. Chem. 1998;273(12):6928–6936. doi: 10.1074/jbc.273.12.6928. [DOI] [PubMed] [Google Scholar]
- Shinohara M., Thornalley P.J., Giadino I., et al. Overexpression of glyoxalase I in bovine endothelial cells inhibits intracellular advanced glycation end-product formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 1998;101(5):1142–1147. doi: 10.1172/JCI119885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J. Biochem. (Tokyo) 1968;23:6171–6179. [PubMed] [Google Scholar]
- Thornalley P.J. Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem. J. 1988;254:751–755. doi: 10.1042/bj2540751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornalley P.J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 1990;269:1–11. doi: 10.1042/bj2690001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornalley P.J. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification – a role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 1996;27(4):565–573. doi: 10.1016/0306-3623(95)02054-3. [DOI] [PubMed] [Google Scholar]
- Thornalley P.J., Edwards L.G., Kang Y., Wyatt C., Davies N., Ladan M.J., Double J. Antitumor activity of S-p-bromobenzylglutathione cyclopentyl diester in vitroin vivo. Inhibition of glyoxalase I and the induction of apoptosis. Biochem. Pharmacol. 1996;51(10):1365–1372. doi: 10.1016/0006-2952(96)00059-7. [DOI] [PubMed] [Google Scholar]
- Vaca C.E., Fang J-L., Conradi M., Hou S-M. Development of a 32P-postlabelling method for the analysis of 2’-deoxyguanosine-3’-monophosphate and DNA adducts of methylglyoxal. Carcinogenesis. 1994;15:1887–1894. doi: 10.1093/carcin/15.9.1887. [DOI] [PubMed] [Google Scholar]
- Vander Jagt D.L., Hassebrook R.K., Hunsaker L.A., Brown W.M., Royer R.E. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem. Biol. Interact. 2001;130–132(13):549–562. doi: 10.1016/S0009-2797(00)00298-2. [DOI] [PubMed] [Google Scholar]
- Vander Jagt D.L., Han L.P., Lehman C.H. Kinetic evaluation of substrate specificity in the glyoxalase I disproportionation of α-ketoaldehydes. Biochemistry. 1972;11(20):3735–3740. doi: 10.1021/bi00770a011. [DOI] [PubMed] [Google Scholar]
- Herreweghe F., Mao J., Chaplen F.W.R., Grooten J., Gevaert K., Vandekerckhove J., Vancompernolle K. Tumor Necrosis Factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of specific methylglyoxal-derived AGEs. Proc. Natl. Acad. Sci. USA. 2002;99(2):949–954. doi: 10.1073/pnas.012432399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchida K., Khor O.T., Oya O., Osawa T., Yasuda Y., Miyata T. Protein modification by Maillard reaction intermediate methylglyoxal. Immunochemical detection of fluorescent 5-methylimidazolone derivatives in vivo. FEBS Lett. 1997;410(2–3):313–318. doi: 10.1016/S0014-5793(97)00610-8. [DOI] [PubMed] [Google Scholar]
- Westwood M.E., McLellan A.C., Thornalley P.J. Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. J. Biol. Chem. 1994;269:32293–32298. [PubMed] [Google Scholar]
- Westwood M.E., Thornalley P.J. Induction of synthesis and secretion of interleukin 1β in the human monocyteic THP-1 cells by human serum albumins modified by methylglyoxal and advanced glycation endproducts. Immunol. Lett. 1996;50:17–21. doi: 10.1016/0165-2478(96)02496-0. [DOI] [PubMed] [Google Scholar]
- Xie L., Wang D.I. Applications of an improved stoichiometric model in medium design and fed-batch cultivation of animal cells in a bioreactor. Cytotechnology. 1994;15(1–3):17–29. doi: 10.1007/BF00762376. [DOI] [PubMed] [Google Scholar]
