Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2000 Oct;34(1-2):131–139. doi: 10.1023/A:1008186302600

Prolongation of murine hybridoma cell survival in stationary batch culture by Bcl-xL expression

Joel R Charbonneau 1, Eric R Gauthier 2,
PMCID: PMC3449729  PMID: 19003387

Abstract

While the ectopic expression of the anti-apoptoticprotein Bcl-2 has been shown to significantly increaseboth cell viability and antibody production in batchculture, some cell lines are refractory to thesemanipulations. For example, the NS/O and theP3x63Ag8.653 murine myelomas, which express highendogenous levels of the Bcl-2 homologue Bcl-xL, areboth resistant to the anti-apoptotic effect of Bcl-2.This indicates that, in these cells, Bcl-2 and Bcl-xLmay be functionally redundant. In order to define therole which Bcl-xL plays in hybridoma cultures, we usedthe Sp2/0-Ag14 cell line. This murine hybridomaexpresses low levels of Bcl-xL and is highly sensitiveto apoptosis induction by cycloheximide (CHX) and byamino acid depletion. Bcl-xL-transfected Sp2/0-Ag14cells were more resistant than the wild type and theplasmid-containing cells to apoptosis induced by CHXand by glutamine depletion. Moreover, when compared tothe vector-transfected control, Bcl-xL-Sp2/0 cellsexhibited a substantial increase in viability instationary batch culture. Interestingly, Sp2/0-Ag14cells overexpressing Bcl-xL showed a growth behaviourthat was similar to the parent myeloma cell lineP3x63Ag8.653. Our results suggest that Bcl-xLexpression levels are sufficient to account for therelative robustness of some hybridoma cell lines instationary batch cultures.

Keywords: apoptosis, bcl-xL, cell growth, cell viability, hybridoma, myeloma

Full Text

The Full Text of this article is available as a PDF (99.4 KB).

References

  1. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science. 1998;281:1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  2. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–1308. doi: 10.1126/science.281.5381.1305. [DOI] [PubMed] [Google Scholar]
  3. Chao DT, Korsmeyer SJ. BCL-2 family: Regulators of cell death. Annu Rev Immunol. 1998;16:395–419. doi: 10.1146/annurev.immunol.16.1.395. [DOI] [PubMed] [Google Scholar]
  4. Chen G, Branton PE, Yang E, Korsmeyer SJ, Shore GC. Adenovirus E1B 19-kDa death suppressor protein interacts with Bax but not with Bad. J Biol Chem. 1996;271:24221–24225. doi: 10.1074/jbc.271.39.24221. [DOI] [PubMed] [Google Scholar]
  5. Chiou SK, Tseng CC, Rao L, White E. Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol. 1994;68:6553–6566. doi: 10.1128/jvi.68.10.6553-6566.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cotter TG, Al-Rubeai M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 1995;13:150–155. doi: 10.1016/S0167-7799(00)88926-X. [DOI] [PubMed] [Google Scholar]
  7. Dickson AJ. Apoptosis regulation and its applications to biotechnology. Trends Biotechnol. 1998;16:339–342. doi: 10.1016/s0167-7799(98)01183-4. [DOI] [PubMed] [Google Scholar]
  8. Fadeel B, Zhivotovsky B, Orrerius S. All along the watchtower: on the regulation of apoptosis regulators. FASEB J. 1999;13:1647–1657. doi: 10.1096/fasebj.13.13.1647. [DOI] [PubMed] [Google Scholar]
  9. Fassnacht D, Rossing S, Franek F, Al-Rubeai M, Portner R. Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotechnology. 1998;26:219–225. doi: 10.1023/A:1007914619219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franek F, Dolnikova J. Nucleosomes occurring in proteinfree hybridoma cell culture. Evidence for programmed cell death. FEBS Lett. 1991;284:285–287. doi: 10.1016/0014-5793(91)80705-8. [DOI] [PubMed] [Google Scholar]
  11. Franek F, Vomastek T, Dolnikova J. Fragmented DNA and apoptotic bodies document the programmed way of cell death in hybridoma cultures. Cytotechnology. 1992;9:117–123. doi: 10.1007/BF02521738. [DOI] [PubMed] [Google Scholar]
  12. Fujita T, Terada S, Fukuoa K, Kitayama A, Ueda H, Suzuki E. Reinforcing apoptosis-resistance of COS and myeloma cells by transfecting with bcl-2 gene. Cytotechnology. 1997;25:25–33. doi: 10.1023/A:1007935026770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gauthier ER, Piché L, Lemieux G, Lemieux R. Role of bcl-xL in the control of apoptosis in murine myeloma cells. Cancer Res. 1996;56:1451–1456. [PubMed] [Google Scholar]
  14. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  15. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119:203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  16. Itoh Y, Ueda H, Suzuki E. Overexpression of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol Bioeng. 1995;48:118–122. doi: 10.1002/bit.260480205. [DOI] [PubMed] [Google Scholar]
  17. Mastrangelo AJ, Betenbaugh MJ. Overcoming apoptosis: new methods for improving protein-expression systems. Trends Biotechnol. 1998;16:88–95. doi: 10.1016/s0167-7799(97)01159-1. [DOI] [PubMed] [Google Scholar]
  18. Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ. Overexpression of Bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng. 2000;67:555–564. doi: 10.1002/(sici)1097-0290(20000305)67:5<555::aid-bit6>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  19. Mercille S, Jolicoeur P, Gervais C, Paquette D, Mosser DD, Massie B. Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/0 myeloma cells transfected with the E1B-19K adenoviral gene. Biotechnol Bioeng. 1999;63:516–528. doi: 10.1002/(sici)1097-0290(19990605)63:5<516::aid-bit2>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  20. Mercille S, Massie B. Induction of apoptosis in nutrientdeprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
  21. Mosser DD, Massie B. Genetically engineering mammalian cell lines for increased viability and productivity. Biotechnol Adv. 1994;12:253–277. doi: 10.1016/0734-9750(94)90013-2. [DOI] [PubMed] [Google Scholar]
  22. Murray K, Ang CE, Gull K, Hickman JA, Dickson AJ. NSO myeloma cell death: Influence of Bcl-2 overexpression. Biotechnol Bioeng. 1996;51:298–304. doi: 10.1002/(SICI)1097-0290(19960805)51:3<298::AID-BIT5>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  23. Nagata S. Apoptosis: Telling the cells their time is up. Current Biology. 1996;6:1241–1243. doi: 10.1016/s0960-9822(02)70706-9. [DOI] [PubMed] [Google Scholar]
  24. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–619. doi: 10.1016/0092-8674(93)90509-o. [DOI] [PubMed] [Google Scholar]
  25. Perreault J, Lemieux R. Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas. Cytotechnology. 1993;13:99–105. doi: 10.1007/BF00749936. [DOI] [PubMed] [Google Scholar]
  26. Perreault J, Lemieux R. Rapid apoptotic cell death of Bcell hybridomas in absence of gene expression. J Cellular Physiol. 1993;156:286–293. doi: 10.1002/jcp.1041560210. [DOI] [PubMed] [Google Scholar]
  27. Simpson NH, Singh RP, Perani A, Goldenzon C, Al-Rubeai M. In hybridoma cultures, deprivation of any amino acids leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng. 1998;59:90–98. doi: 10.1002/(sici)1097-0290(19980705)59:1<90::aid-bit12>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  28. Singh R, Al-Rubeai M, Emery AN. Apoptosis: exploiting novel pathways to the improvement of cell culture processes. Genet Eng Biotechnol. 1996;16:227–251. [Google Scholar]
  29. Singh RP, Al-Rubeai M, Gregory CD, Emery AN. Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng. 1994;44:720–726. doi: 10.1002/bit.260440608. [DOI] [PubMed] [Google Scholar]
  30. Singh RP, Emery AN, Al-Rubeai M. Enhancement of survivability of mammalian cells by overexpression of the 139 apoptosis-suppressor gene bcl-2. Biotechnol Bioeng. 1996;52:166–175. doi: 10.1002/(SICI)1097-0290(19961005)52:1<166::AID-BIT17>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  31. Smith CA, Williams GT, Kingston R, Jenkinson EJ, Owen JJT. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature. 1989;337:181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
  32. Terada S, Fukuoka K, Fujita T, Komatsu T, Takayama S, Reed JC, Suzuki E. Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotechnology. 1997;25:17–23. doi: 10.1023/A:1007954103572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a hetorodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80:285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES