Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 Sep;31(1-2):53–60. doi: 10.1023/A:1008011919876

A recombinant bait region mutant of human α2-macroglobulin exhibiting an altered proteinase-inhibiting spectrum

Atsushi Ikai, Kayoko Ookata, Masaru Shimizu, Noboru Nakamichi, Mamiko Ito, Toshiharu Matsumura
PMCID: PMC3449781  PMID: 19003124

Abstract

Alpha 2-macroglobulin (α2M), a plasma glycoprotein produced in the liver, inhibits a variety of proteinases and thus considered to play important homeostatic roles in the body. This broad inhibitory spectrum has been explained by the trapping theory by which a proteinase recognizes a region of 25–30 amino acid peptide in α2M called bait region and cleaves it, leading to the conformational change of α2M, and to the subsequent entrapment and inhibition of the proteinase. We constructed α2M cDNAs with mutated DNA sequences in the bait region, and obtained recombinant CHO cell lines producing either wild type α2M, or mutant α2Ms, i.e., α2M/K692 and α2M/K696, each with substitution of Arg with Lys at codons 692 and 696, respectively. We tested if lysyl endopeptidase is not inhibited by wild type α2M, but could be inhibited by these engineered mutant α2Ms. Thus, recombinant α2M/K696 protein successfully inhibited lysyl endopeptidase activity, while recombinant α2M/K692 protein was not sensitive to lysyl endopeptidase, suggesting that not all bait region peptide bonds can equally be accessible and susceptible to proteinases. The present results not only provided the trapping theory with additional supportive evidence, but the first experimental evidence for the value of engineered α2M-derived proteinase inhibitor with an artificial proteinase inhibitory spectrum of potential industrial and/or therapeutic usefulness.

Keywords: alpha-2-macroglobulin, α2M, bait region, CHO cells, human, lysyl endopeptidase

Full Text

The Full Text of this article is available as a PDF (119.3 KB).

References

  1. Arakawa H, Nishigai M, Ikai A. Alpha 2-macroglobulin traps a proteinase in the midregion of its arms. An immunoelectron microscopic study. J Biol Chem. 1989;264:2350–2356. [PubMed] [Google Scholar]
  2. Arakawa H, Osada T, Ikai A. Unusual properties of crocodilian ovomacroglobulin shown in its methylamine treatment and sulfhydryl titration. Arch Biochem Biophys. 1986;244:447–453. doi: 10.1016/0003-9861(86)90612-0. [DOI] [PubMed] [Google Scholar]
  3. Araujo-Jorge TC, Lage MJ, Rivera MT, Carlier Y, VanLeuven F. Trypanosoma cruzi: enhanced alpha-macroglobulin levels correlate with the resistance of BALB/cj mice to acute infection. Parasitol Res. 1992;78:215–221. doi: 10.1007/BF00931729. [DOI] [PubMed] [Google Scholar]
  4. Barrett AJ, Starkey PM. The interaction of α22-macroglobulin with proteinases: characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973;133:709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett AJ, Brown MA, Sayers CA. The electrophoretically 'slow’ and ‘fast’ forms of the alpha 2-macroglobulin molecule. Biochem J. 1979;181:401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bedi GS, Williams T. Purification and characterization of a collagen-degrading protease from Porphyromonas gingivalis. J Biol Chem. 1994;269:599–606. [PubMed] [Google Scholar]
  7. Bjork I. Non-productive activation of the proteinase binding sites of α2macroglobulin on reaction of the inhibitor with matrix-linked trypsin. Biochem Biophys Res Commun. 1984;118:691–695. doi: 10.1016/0006-291X(84)91358-5. [DOI] [PubMed] [Google Scholar]
  8. Bjork I, Lindblom T, Lindahl P. Changes of the proteinase binding properties and conformation of bovine alpha 2-macroglobulin on cleavage of thio ester bonds by methylamine. Biochemistry. 1985;24:2653–2660. doi: 10.1021/bi00332a010. [DOI] [PubMed] [Google Scholar]
  9. Boel E, Kristensen T, Peterson CM, Mortensen SB, Gliemann J, Sottrup-Jensen L. Expression of human α2-macroglobulin cDNA in baby hamster kidney fibroblasts: Secretion of high levels of active α2-macroglobulin. Biochemistry. 1990;29:408–4087. doi: 10.1021/bi00454a015. [DOI] [PubMed] [Google Scholar]
  10. Borth W. α2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 1992;10:3345–3353. doi: 10.1096/fasebj.6.15.1281457. [DOI] [PubMed] [Google Scholar]
  11. Borth W, Teodorescu Inactivation of human interleukin-2 (IL-2) by α2-macroglobulin-trypsin complexes. Immunology. 1986;57:367–371. [PMC free article] [PubMed] [Google Scholar]
  12. Chhatwal GS, Albohn G, Blobel H. Nobel complex formed between a nonproteolytic cell wall protein of group A Streptococci and α2-macroglobulin. J Bacteriology. 1987;169:3691–3695. doi: 10.1128/jb.169.8.3691-3695.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chu CT, Pizzo SV. Biology of disease; a2-macroglobulin, complement, and biologic defense: antigens, growth factors, microbial, proteinases and receptor ligation. Lab Invest. 1994;71:792–812. [PubMed] [Google Scholar]
  14. Dangott LJ, Cunningham LW. Residual alpha 2-macroglobulin in fetal calf serum and properties of its complex with thrombin. Biochem Biophys Res Commun. 1982;107:1243–1251. doi: 10.1016/S0006-291X(82)80131-9. [DOI] [PubMed] [Google Scholar]
  15. Feldman SR. Purification and characterization of frog alpha-macroglobulin: receptor recognition of amphibian glycoprotein. Biochemistry. 1991;24:2569–2575. doi: 10.1021/bi00331a026. [DOI] [PubMed] [Google Scholar]
  16. Freedman SR, Pizzo SV. The role of alpha 2-macroglobulin in furunculosis: a comparison of rainbow trout and brook trout. Comp Biochem Physiol. 1985;98B:549–553. doi: 10.1016/0305-0491(91)90252-9. [DOI] [PubMed] [Google Scholar]
  17. Hattori M, Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986;152:232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  18. Kan C-C, Solomon E, Belt KT, Chain AC, Hiorns LR, Fey G. Nucleotide sequence of cDNA encoding human α2-macroglobulin and assignment of the chromosomal locus. Proc Natl Acad Sci USA. 1985;82:2282–2286. doi: 10.1073/pnas.82.8.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyagawa S-I, Nishino N, Kamata R, Okamura R-I, Maeda H. Effects of protease inhibitors on growth of Serratia marcescens and Pseudomonas aeruginosa. Microbial Pathogenesis. 1991;11:137–141. doi: 10.1016/0882-4010(91)90007-W. [DOI] [PubMed] [Google Scholar]
  20. Molla A, Oda T, Maeda H. Different binding kinetics of serratia 56K protease with plasma alpha 2-macroglobulin and chicken egg white ovomacroglobulin. J Biochem. 1987;101:199–205. doi: 10.1093/oxfordjournals.jbchem.a121892. [DOI] [PubMed] [Google Scholar]
  21. Mortensen SB, Sottrup-Jensen L, Hansen HF, Petersen TE, Magnusson S. Primary and secondary cleavage sites in the bait region of alpha 2-macroglobulin. FEBS lett. 1981;135:295–300. doi: 10.1016/0014-5793(81)80804-6. [DOI] [PubMed] [Google Scholar]
  22. Nakamichi N, Ito M, Hirota Y and Matsumura T (1997) Establishment of recombinant human transferrin-producing CHO cell lines, in K. Funatsu et al. (eds.), Animal Cell Technology: Basic & Applied Aspects 8: 373–379.
  23. Nakamichi N, Shimizu M, Ito M, Ikai A and Matsumura T. (1998) Establishment of recombinant CHO cell lines producing wild-type and mutant human α2-macroglobulins, in S. Iijima et al. (eds.), Animal Cell Technology: Basic & Applied Aspects 9: (in press).
  24. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res. 1994;211:90–98. doi: 10.1006/excr.1994.1063. [DOI] [PubMed] [Google Scholar]
  25. Osada T, Nishigai M, Ikai A. Open Quarternary structure of the hagfish proteinase inhibitor with similar properties to human α2-macroglobulin. J Ultrastruct Molec Struct Res. 1986;96:136–145. doi: 10.1016/0889-1605(86)90014-5. [DOI] [PubMed] [Google Scholar]
  26. Pastan IH, Willingham MC, Anderson W, Gallo M. Localization of serum-derived alpha 2 macroglobulin in cultured cells and decrease after Moloney sarcoma virus transformation. Cell. 1977;12:609–617. doi: 10.1016/0092-8674(77)90261-6. [DOI] [PubMed] [Google Scholar]
  27. Pritchett TJ, Paulson JC. Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin. J Biol Chem. 1989;264:9850–9858. [PubMed] [Google Scholar]
  28. Robert RC, Hall PK. Specificity of proteinases for the “bait” region of alpha2-macroglobulin. Ann N Y Acad Sci. 1983;421:61–68. doi: 10.1111/j.1749-6632.1983.tb18092.x. [DOI] [PubMed] [Google Scholar]
  29. Ryan-Poirier KA, Kawaoka Y. Alpha 2-macroglobulin is the major neutralizing inhibitor of influenza A virus in pig serum. Virology. 1993;193:974–976. doi: 10.1006/viro.1993.1208. [DOI] [PubMed] [Google Scholar]
  30. Sekiyama F, Masaki T. Lysyl endopeptidase of Achromobacter lyticus. Methods Enzymol. 1994;244:126–137. doi: 10.1016/0076-6879(94)44011-5. [DOI] [PubMed] [Google Scholar]
  31. Sottrup-Jensen L, Sand O, Kristensen L, Fey GH. The α-macroglobulin bait region: Sequence diversity and localization of cleavage sites for proteinases in five mammalian α-macroglobulins. J Biol Chem. 1989;264:15781–15789. [PubMed] [Google Scholar]
  32. Sottrup-Jensen L, Birkedal-Hansen H. Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J Biol Chem. 1989;264:393–401. [PubMed] [Google Scholar]
  33. Starkey PM, Barrett AJ. Evolution of alpha 2-macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha 2-macroglobulin. Biochem J. 1982;205:91–115. doi: 10.1042/bj2050091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Willingham MC, Maxfield FR, Pastan IH. Alpha 2 macroglobulin binding to the plasma membrane of cultured fibroblasts. Diffuse binding followed by clustering in coated regions. J Cell Biol. 1979;82:614–625. doi: 10.1083/jcb.82.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wolf U, Bauer D, Traub WH. Metalloproteases of Serratia liquefaciens: degradation of purified human serum proteins. Zentralbl Bakteriol. 1991;276:16–26. doi: 10.1016/s0934-8840(11)80214-8. [DOI] [PubMed] [Google Scholar]
  36. Wolf U, Bauer D, Traub WH. A 41.7kDa serine protease from Clostridium perfringens type A: degradation of purified human serum proteins. Int J Med Microbiol Virol Parasitol Infec Dis. 1992;277:145–160. doi: 10.1016/s0934-8840(11)80608-0. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES