Abstract
We describe the preparation and structural analysis of ordered tubular arrays of the actin-DNase I complex. These structures consist of helically stacked rings; each ring is 73 A thick, has a 240 A outer and a 120 A inner diameter, and has 7-fold rotational symmetry. The actin-DNase I complex forms tubes under conditions in which actin alone aggregates into crystalline sheets-i.e., in the presence of the trivalent cation gadolinium. Moreover, upon addition of an equimolar amount of DNase I, crystalline actin sheets are slowly converted to tubes. The rings making the tubes contain a radial dyad axis that may be identical to the dyad axis of the unit cell of the crystalline actin sheet. Evidence is presented for this identification, which in turn allows tentative assignment of actin- and DNase I-containing regions in three-dimensional reconstructions of the rings. The structural analysis presented here may be useful in aligning available three-dimensional molecular models of actin determined from crystals of the actin-DNase I complex and from crystalline actin sheets with each other and ultimately within the biologically important actin filament.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi U., Fowler W. E., Isenberg G., Pollard T. D., Smith P. R. Crystalline actin sheets: their structure and polymorphism. J Cell Biol. 1981 Nov;91(2 Pt 1):340–351. doi: 10.1083/jcb.91.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aebi U., Smith P. R., Isenberg G., Pollard T. D. Structure of crystalline actin sheets. Nature. 1980 Nov 20;288(5788):296–298. doi: 10.1038/288296a0. [DOI] [PubMed] [Google Scholar]
- Barden J. A., dos Remedios C. G. Crystalline actin tubes. I. Is the conformation of the lanthanide-induced actin tube monomer more like F-actin than G-actin? Biochim Biophys Acta. 1980 Jul 24;624(1):163–173. doi: 10.1016/0005-2795(80)90235-4. [DOI] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Crowther R. A., Amos L. A. Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol. 1971 Aug 28;60(1):123–130. doi: 10.1016/0022-2836(71)90452-9. [DOI] [PubMed] [Google Scholar]
- Fowler W. E., Aebi U. Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing. J Ultrastruct Res. 1983 Jun;83(3):319–334. doi: 10.1016/s0022-5320(83)90139-9. [DOI] [PubMed] [Google Scholar]
- Gershman L. C., Selden L. A., Estes J. E. On the interaction of muscle actin with gadolinium. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1280–1287. doi: 10.1016/0006-291x(79)91205-1. [DOI] [PubMed] [Google Scholar]
- Harwell O. D., Sweeney M. L., Kirkpatrick F. H. Conformation changes of actin during formation of filaments and paracrystals and upon interaction with DNase I, cytochalasin B, and phalloidin. J Biol Chem. 1980 Feb 10;255(3):1210–1220. [PubMed] [Google Scholar]
- Hitchcock S. E. Actin deoxyroboncuclease I interaction. Depolymerization and nucleotide exchange. J Biol Chem. 1980 Jun 25;255(12):5668–5673. [PubMed] [Google Scholar]
- Hitchcock S. E., Carisson L., Lindberg U. Depolymerization of F-actin by deoxyribonuclease I. Cell. 1976 Apr;7(4):531–542. doi: 10.1016/0092-8674(76)90203-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer S. S. Damage to actin filaments by glutaraldehyde: protection by tropomyosin. J Cell Biol. 1981 Aug;90(2):459–466. doi: 10.1083/jcb.90.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannherz H. G., Goody R. S., Konrad M., Nowak E. The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem. 1980 Mar;104(2):367–379. doi: 10.1111/j.1432-1033.1980.tb04437.x. [DOI] [PubMed] [Google Scholar]
- Mannherz H. G., Leigh J. B., Leberman R., Pfrang H. A specific 1:1 G-actin:DNAase i complex formed by the action of DNAase I on F-actin. FEBS Lett. 1975 Dec 1;60(1):34–38. doi: 10.1016/0014-5793(75)80412-1. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
- Rohr G., Mannherz H. G. Isolation and characterization of secretory actin . DNAase I complex from rat pancreatic juice. Eur J Biochem. 1978 Aug 15;89(1):151–157. doi: 10.1111/j.1432-1033.1978.tb20907.x. [DOI] [PubMed] [Google Scholar]
- Sakabe N., Sakabe K., Sasaki K., Kondo H., Ema T., Kamiya N., Matsushima M. Crystallographic studies of the chicken gizzard G-actin X DNase I complex at 5A resolution. J Biochem. 1983 Jan;93(1):299–302. doi: 10.1093/oxfordjournals.jbchem.a134168. [DOI] [PubMed] [Google Scholar]
- Seymour J., O'Brien E. J. The position of tropomyosin in muscle thin filaments. Nature. 1980 Feb 14;283(5748):680–682. doi: 10.1038/283680a0. [DOI] [PubMed] [Google Scholar]
- Smith P. R., Aebi U. The determination of the helical screw angle of a helical particle from its diffraction pattern. J Mol Biol. 1976 Sep 15;106(2):271–275. doi: 10.1016/0022-2836(76)90084-x. [DOI] [PubMed] [Google Scholar]
- Smith P. R. An integrated set of computer programs for processing electron micrographs of biological structures. Ultramicroscopy. 1978;3(2):153–160. doi: 10.1016/s0304-3991(78)80021-7. [DOI] [PubMed] [Google Scholar]
- Smith P. R., Fowler W. E., Pollard T. D., Aebi U. Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament. J Mol Biol. 1983 Jul 5;167(3):641–660. doi: 10.1016/s0022-2836(83)80103-x. [DOI] [PubMed] [Google Scholar]
- Smith P. R. Freeze-drying specimens for electron microscopy. J Ultrastruct Res. 1980 Sep;72(3):380–384. doi: 10.1016/s0022-5320(80)90072-6. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Huxley H. E., Finch J. T. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J Mol Biol. 1972 Dec 30;72(3):619–632. doi: 10.1016/0022-2836(72)90180-5. [DOI] [PubMed] [Google Scholar]
- Suck D., Kabsch W., Mannherz H. G. Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNAse I at 6-A resolution. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4319–4323. doi: 10.1073/pnas.78.7.4319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakabayashi T., Huxley H. E., Amos L. A., Klug A. Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex. J Mol Biol. 1975 Apr 25;93(4):477–497. doi: 10.1016/0022-2836(75)90241-7. [DOI] [PubMed] [Google Scholar]
- Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]
- dos Remedios C. G., Dickens M. J. Actin microcrystals and tubes formed in the presence of gadolinium ions. Nature. 1978 Dec 14;276(5689):731–733. doi: 10.1038/276731a0. [DOI] [PubMed] [Google Scholar]






