Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Jul;42(2):75–85. doi: 10.1023/B:CYTO.0000009816.65227.84

Promoting effect of rapeseed proteins and peptides on Sf9 insect cell growth

V Deparis 1, C Durrieu 1, M Schweizer 1, I Marc 1, JL Goergen 1, I Chevalot 1, A Marc 1,
PMCID: PMC3449798  PMID: 19002930

Abstract

The Baculovirus Expression Vector System has become widely used for the production of recombinant proteins for research and diagnostics. Serum-free culture media able to support high cell densities have been developed for the large scale culture of insect cells. While serum elimination aims at avoiding the risks associated with the introduction of an ill defined component of bovine origin, additives such as protein hydrolysates from animal sources are still used. An alternative could be the supplementation of culture media with protein hydrolysates derived from plants. In this study, we describe the replacement of lactalbumin hydrolysate with a laboratory produced hydrolysate of rapeseed proteins. Its effect on Sf9 cell growth kinetics, substrate consumption and by-product formation in low-serum or serum-free medium was evaluated. Cells were unable to grow in the presence of a rapeseed protein hydrolysate generated by PTN 3.0 Special® enzyme and containing only 24% of peptides under 1 kDa in size. On the other hand, serum-free medium supplementation with a rapeseed protein hydrolysate obtained with Orientase 90N® enzyme had a strong growth promoting effect, leading to a 60% increase in maximal cell density without affecting cell metabolism. This significant positive effect could be explained by the higher degree of hydrolysis of this digest, with 74% of peptides under 1 kDa in size.

Keywords: Growth kinetics, Hydrolysis degree, Metabolism, Protein hydrolysates, Rapeseed proteins, Serum-free medium, Sf9 cells, Size distribution

Full Text

The Full Text of this article is available as a PDF (231.8 KB).

References

  1. Adler-Nissen J. Limited enzymatic degradation of proteins: a new approach in the industrial application of hydrolases. J. Chem. Techn. Biotechnol. 1982;32:138–156. doi: 10.1002/jctb.5030320118. [DOI] [Google Scholar]
  2. Altmann F., Staudacher E., Wilson I.B.H., März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj. J. 1999;16:109–123. doi: 10.1023/A:1026488408951. [DOI] [PubMed] [Google Scholar]
  3. Bonarius H.P.J., Hatzimanikatis V., Meesters K.P.H., deGooijer C.D., Schmid G., Tramper J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol. Bioeng. 1996;50:299–318. doi: 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  4. Donaldson M.S., Shuler M.L. Low-cost serum-free medium for the BTI-Tn5B1-4 Insect Cell Line. Biotechnol. Prog. 1998;14:573–579. doi: 10.1021/bp9800541. [DOI] [PubMed] [Google Scholar]
  5. Franek F., Hohenwarter O., Katinger H. Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cell cultures. Biotechnol. Prog. 2000;16:688–692. doi: 10.1021/bp0001011. [DOI] [PubMed] [Google Scholar]
  6. Franek F., Katinger H. Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol. Prog. 2002;18:155–158. doi: 10.1021/bp0101278. [DOI] [PubMed] [Google Scholar]
  7. Godel H., Seitz P., Verhoef M. Automated amino acid analysis using combined OPA and FMOC-CI precolumn de-rivatization. LC-GC. 1992;5:44–49. [Google Scholar]
  8. Godon B. Protéines Végétales: Les Méthodes Courantes de Laboratoire Pour la Séparation et l'Analyse de Protéines Végétales. Paris: Lavoisier Tec Doc; 1996. pp. 65–77. [Google Scholar]
  9. Grimble G.K., Rees R.G., Keophane P.P., Cartwright T., Des-reumaux M., Silk D.B.A. Effect of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterology. 1987;92:136–142. doi: 10.1016/0016-5085(87)90850-x. [DOI] [PubMed] [Google Scholar]
  10. Heidemann R., Zhang C., Qi H., Rule J.L., Rozales C., Park S., Chuppa S., Ray M., Michaels J., Konstantinov K., Naveh D. The use of peptones as medium additives for the pro-duction of a recombinant therapeutic protein in high-densityperfusion cultures of mammalian cells. Cytotechnology. 2000;32:157–167. doi: 10.1023/A:1008196521213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hink W.F. Established cell line from the cabbage looper, Trichoplusia ni. Nature. 1970;226:466–467. doi: 10.1038/226466b0. [DOI] [PubMed] [Google Scholar]
  12. Inlow D., Shauger A., Maiorella B. Insect cell culture and baculobaculovirus propagation in protein-free medium. J. Tiss. Cult. Meth. 1989;12:13–16. doi: 10.1007/BF01578001. [DOI] [Google Scholar]
  13. Jan D.C.H., Jones S.J., Emery A.N., Al-Rubeai M. Peptone, a low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology. 1994;16:17–26. doi: 10.1007/BF00761775. [DOI] [PubMed] [Google Scholar]
  14. Keen M., Rapson N. Development of a serum-free culture medium for the large scale production of recombinant protein from Chinese Hamster Ovary cell line. Cytotechnology. 1995;17:153–163. doi: 10.1007/BF00749653. [DOI] [PubMed] [Google Scholar]
  15. Minamoto Y., Ogawa K., Hideki A., Iochi Y., Misugi K. Development of a serum-free and heat sterilizable medium and continuous high-density cell culture. Cytotechnology. 1991;5(Suppl.2):S35–51. doi: 10.1007/BF00573879. [DOI] [PubMed] [Google Scholar]
  16. Price P.J., Gorfien S., Danner D. and Plavsic M. 1999. Animal cell culture media comprising non-animal or plant-derived nutrients. Life Technologies Inc., Patent 1999, WO 9957246.
  17. Schlaeger E.J., Foggetta M., Vonach J.M., Christensen K. SF-1, a low-cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol. Techn. 1993;7:183–188. [Google Scholar]
  18. Schlaeger E.J. The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J. Immunol. Methods. 1996;194:191–199. doi: 10.1016/0022-1759(96)00080-4. [DOI] [PubMed] [Google Scholar]
  19. Schweizer M. Fractionnement et Identification de Petits´ Peptides Issus de l'Hydrolyse Enzymatique des Protéines de Colza. France: Institut National Polytechnique de Lorraine, Vandoeuvre-lès-Nancy; 2002. [Google Scholar]
  20. Vaughn J.L. and Fan F. 1991. Low cost, serum-free medium for the production of baculoviruses in vitro. Proceedings of the Eighth International Conference on Invertebrate and Fish Tissue Cul-ture, Anaheim, CA, Tissue Culture Association, pp. 111–116.
  21. Wyatt S.S. Culture in vitro of tissue from the silkworm Bombyx mori. J. Gen. Physiol. 1956;39:841–852. doi: 10.1085/jgp.39.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES