Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Jan;47(1-3):79–88. doi: 10.1007/s10616-005-3753-8

In vitro System for Assessing Dioxin Absorption by Intestinal Epithelial Cells and for Preventing this Absorption by Food Substances

Yayoi Natsume 1,, Hideo Satsu 1, Mika Hamada 1, Kazushige Kitamura 2, Naoto Okamoto 2, Makoto Shimizu 1
PMCID: PMC3449813  PMID: 19003047

Abstract

A system for assessing intestinal dioxin absorption was established by applying a Caco-2 cell monolayer and stable dioxin-responsive cell line. The stable dioxin-responsive cell line was established by introducing a plasmid incorporating the human CYP1A1 promoter into human hepatic HepG2 genomic DNA upstream of the luciferase gene. 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) was added to the apical side of differentiated human intestinal epithelial Caco-2 cell monolayers that had been cultured on a semipermeable membrane. The basal medium was taken after an appropriate incubation time and added to the dioxin-responsive cells, the TCDD content then being analyzed by a luciferase assay. The amount of TCDD in the basal medium increased in a dose- and time-dependent manner, the results being sufficiently sensitive and reproducible. The inhibition of TCDD permeability to the Caco-2 cell monolayer by such food substances as chlorophyll, insoluble corn fiber and tea dregs were observed by this in vitro assessment system. The system will therefore be useful to identify food substances having a preventive effect on the intestinal absorption of dioxins.

Keywords: 2,3,7,8-Tetrachlorodibenzo-p-dioxin; Assessment system; Food factor; Freeze-thaw arrangement; Small intestine

Full Text

The Full Text of this article is available as a PDF (318.0 KB).

Glossary

AhR

aryl hydrocarbon receptor

3-MC

3-methylcholanthrene

MDR1

multi-drug resistance 1

MRP2

multi-drug resistance- associated protein 2

MXR

mitoxantrone resistance protein

RLU

relative light unit

TBT

tributyltin

TCDD

2,3,7,8-tetrachlorodibenzo-p-dioxin

XRE

xenobiotic responsive element

References

  1. Amakura Y., Tsutsumi T., Nakamura M., Kitagawa H., Fujino J., Sasaki K., Yoshida T., Toyoda M. Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol. Pharm. Bull. 2002;25(2):272–274. doi: 10.1248/bpb.25.272. [DOI] [PubMed] [Google Scholar]
  2. Anoek J., Bart J.G.K., Elaine K., Abraham B., Jan K., Michael S.D. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J. Agric. Food Chem. 2003;51:5478–5487. doi: 10.1021/jf030252u. [DOI] [PubMed] [Google Scholar]
  3. Aozawa O., Ohta S., Nakano T., Miyata H., Nomura T. Enhancement of fecal excretion of dioxin isomer in mice by several dietary fibers. Chemosphere. 2001;45:195–200. doi: 10.1016/s0045-6535(00)00557-9. [DOI] [PubMed] [Google Scholar]
  4. Chan H.Y., Wang H., Tsang D.S., Chen Z.Y., Leung L.K. Screening of chemopreventive tea polyphenols against PAH genotoxicity in breast cancer cells by a XRE-luciferase reporter construct. Nutr. Cancer. 2003;46(1):93–100. doi: 10.1207/S15327914NC4601_12. [DOI] [PubMed] [Google Scholar]
  5. Djien Liem A.K., Furst P., Rappe C. Exposure of populations to dioxins and related compounds. Food Addict. Contam. 2000;17:241–260. doi: 10.1080/026520300283324. [DOI] [PubMed] [Google Scholar]
  6. Fardel O., Lecureur V., Corlu A., Guillouzo A. P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment. Biochem. Pharmacol. 1996;51:1427–1436. doi: 10.1016/0006-2952(96)00081-0. [DOI] [PubMed] [Google Scholar]
  7. Feng Q., Torii Y., Uchida K., Nakamura Y., Hara Y., Osawa T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures. J. Agric. Food Chem. 2002;50(1):213–220. doi: 10.1021/jf010875c. [DOI] [PubMed] [Google Scholar]
  8. Hahn M.E. The aryl hydrocarbon receptor: a comparative perspective. Comp. Biochem. Physiol., Part C Pharmacol. Toxicol. Endocrinol. 1997;121:23–53. doi: 10.1016/s0742-8413(98)10028-2. [DOI] [PubMed] [Google Scholar]
  9. Hallikainen A., Vartiainen T. Food control surveys of polychlorinated dibenzo-p-dioxins and dibenzofurans and intake estimates. Food Addit. Contam. 1997;14:355–366. doi: 10.1080/02652039709374538. [DOI] [PubMed] [Google Scholar]
  10. Hankinson O. The aryl hydrocarbon receptor complex. Ann. Rev. Pharmacol. Toxicol. 1995;35:307–340. doi: 10.1146/annurev.pa.35.040195.001515. [DOI] [PubMed] [Google Scholar]
  11. Hidalgo I.J., Raub T., Borchardt R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–749. [PubMed] [Google Scholar]
  12. Kazlauskas A., Poellinger L., Pongraz I. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J. Biol. Chem. 1999;274:13519–13524. doi: 10.1074/jbc.274.19.13519. [DOI] [PubMed] [Google Scholar]
  13. Ko H.P., Okino S.T., Ma Q., Whitlock J.P., Jr. Dioxin-induced CYP1A1 transcription in vivo: the aromatic hydrocarbon receptor mediates transcription, enhancer– promoter communication, and changes in chromatin structure. Mol. Cell. Biol. 1996;16:430–436. doi: 10.1128/mcb.16.1.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kobayashi A., Numayama-Tsuruta K., Sogawa K., Fujii-Kuriyama Y. CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt) J. Biochem. 1997;122:703–710. doi: 10.1093/oxfordjournals.jbchem.a021812. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi A., Sogawa K., Fujii-Kuriyama Y. Cooperative interaction between AhR Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene. J. Biol. Chem. 1996;271:12310–12316. doi: 10.1074/jbc.271.21.12310. [DOI] [PubMed] [Google Scholar]
  16. Kumar M.B., Perdew G.H. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of AhR and modulates its transactivation potential. Gene Exper. 1999;8:273–286. [PMC free article] [PubMed] [Google Scholar]
  17. Kumar M.B., Tarpey R.W., Perdew G.H. Differential recruitment of coactivator RIP140 by Ahestrogen receptors. J. Biol. Chem. 1999;274:22155–22164. doi: 10.1074/jbc.274.32.22155. [DOI] [PubMed] [Google Scholar]
  18. Landers J.P. The Ah receptor and the mechanism of dioxin toxicity. Biochem. J. 1991;276:273–287. doi: 10.1042/bj2760273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Litman T., Druley T.E., Stein W.D., Bates S.E. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol. Life Sci. 2001;58:931–959. doi: 10.1007/PL00000912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mayer B.K., Perdew G.H. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry. 1999;38:8907–8917. doi: 10.1021/bi9910373. [DOI] [PubMed] [Google Scholar]
  21. Mayer B.K., Pray-Grant M.G., Heuvel J.P., Perdew G.H. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol. 1998;18:978–988. doi: 10.1128/mcb.18.2.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morita K., Matsueda T., Iida T. Effect of green tea (matcha) on gastrointestinal tract absorption of polychlorinated biphenyls, polychlorinated dibenzofurans and polychlorinated dibenzo-p-dioxins in rats. Fukuoka Igaku Zasshi. 1997;88(5):162–168. [PubMed] [Google Scholar]
  23. Morita K., Ogata M., Hasegawa T. Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Environ. Health Perspect. 2001;109(3):289–294. doi: 10.1289/ehp.01109289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Natsume Y., Satsu H., Hatsugai Y., Watanabe H., Sato R., Ashida H., Tukey R.H., Shimizu M. Evaluation of intestinal dioxin permeability by using human Caco-2 cell monolayers. Food Sci. Technol. Res. 2003;9(4):364–366. [Google Scholar]
  25. Nebert D.W., Roe A.L., Dieter M.Z., Solis W.A., Yang Y., Dalton T.P. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in oxidative stress responsecell cycle control, and apotosis. Biochem. Pharmacol. 2000;59:65–85. doi: 10.1016/S0006-2952(99)00310-X. [DOI] [PubMed] [Google Scholar]
  26. Ohtake F., Takeyama K., Matsumoto T., Kitagawa H., Yamamoto Y., Nohara K., Tohyama C., Krust A., Mimura J., Chambon P., Yanagisawa J., Fujii-Kuriyama Y., Kato S. Modulation of oestrogen receptor signaling by association with the activated dioxin receptor. Nature. 2003;423(6939):545–550. doi: 10.1038/nature01606. [DOI] [PubMed] [Google Scholar]
  27. Palermo C.M., Hernando J.I., Dertinger S.D., Kende A.S., Gasiewicz T.A. Identification of potential aryl hydrocarbon receptor antagonists in green tea. Chem. Res. Toxicol. 2003;16(7):865–872. doi: 10.1021/tx025672c. [DOI] [PubMed] [Google Scholar]
  28. Poland A., Knutson J.C. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Ann. Rev. Pharmacol. Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
  29. Postlind H., Vu T.P., Tukey R.H., Quattrochi L.C. Response of human CYP1-luciferase plasmids to 2,3,7,8-tetrachlorodibenzo-p-dioxin and polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 1993;118:255–262. doi: 10.1006/taap.1993.1031. [DOI] [PubMed] [Google Scholar]
  30. Rosenberg D.W., Leff T. Regulation of cytochrome P450 in cultured human colonic cells. Arch. Biochem. Biophys. 1993;300(1):186–192. doi: 10.1006/abbi.1993.1026. [DOI] [PubMed] [Google Scholar]
  31. Safe S. Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol. Lett. 2001;120:1–7. doi: 10.1016/S0378-4274(01)00301-0. [DOI] [PubMed] [Google Scholar]
  32. Sogawa K., Fujii-Kuriyama Y. Ah receptora novel ligand-activated transcription factor. J. Biochem. (Tokyo) 1997;122:1075–1079. doi: 10.1093/oxfordjournals.jbchem.a021864. [DOI] [PubMed] [Google Scholar]
  33. Tanabe S., Kannan N., Subramanian A., Watanabe S., Tatsukawa R. High toxic PCBs: Occurrencesource persistency and toxic implications to wildlife and humans. Environ. Pollut. 1987;27:147–153. doi: 10.1016/0269-7491(87)90044-3. [DOI] [PubMed] [Google Scholar]
  34. Whitlock J.P., Jr. Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Ann. Rev. Pharmacol. Toxicol. 1991;30:251–277. doi: 10.1146/annurev.pa.30.040190.001343. [DOI] [PubMed] [Google Scholar]
  35. Williams S.N., Pickwell G.V., Quattrochi L.C. A combination of tea (Camellia senensis) catechins is required for optimal inhibition of induced CYP1A1 expression by green tea extract. J. Agric. Food Chem. 2003;51(22):6627–6634. doi: 10.1021/jf030181z. [DOI] [PubMed] [Google Scholar]
  36. Williams S.N., Shih H., Guenette D.K., Brackney W., Denison M.S., Pickwell G.V., Quattrochi L.C. Comparative studies on the effects of green tea extracts and individual tea catechins on human CYP1A1 gene expression. Chem. Biol. Interact. 2000;128(3):211–229. doi: 10.1016/S0009-2797(00)00204-0. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES