Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Jan;47(1-3):117–126. doi: 10.1007/s10616-005-3761-8

Enzyme-digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon novae-caledoniaekylin Inhibit Invasion and Angiogenesis of Tumor Cells

Jun Ye 1, Yuping Li 1, Kiichiro Teruya 1, Yoshinori Katakura 1, Akira Ichikawa 2, Hiroshi Eto 3, Mutsutaka Hosoi 4, Masako Hosoi 5, Shinji Nishimoto 6, Sanetaka Shirahata 1,
PMCID: PMC3449827  PMID: 19003051

Abstract

Fucoidan is a uniquely-structured sulfated polysaccharide found in the cell walls of several types of brown seaweed that has recently, especially as enzyme-digested fucoidan extract, attracted a lot attention due to its anti-tumor potential. In this study, we evaluated the effects of enzyme-digested fucoidan extracts prepared from seaweed Mozuku of Cladosiphon novae-caledoniae kylin on in vitro invasion and angiogenesis abilities of human tumor cells. First, we evaluated the effect of the fucoidan extracts on oxidative stress of tumor cells, and demonstrated that intracellular H2O2 level and released H2O2 from tumor cells were both greatly repressed upon the treatment with the fucoidan extracts, suggesting that fucoidan extracts ameliorate oxidative stress of tumor cells. Next, we tested for the effects of fucoidan extracts on invasion ability of human fibrosarcoma HT1080 cells, showing that fucoidan extracts significantly inhibit their invasion, possibly via suppressing matrix metalloproteinases (MMPs) MMP-2/9 activities. Further, we investigated the effects of the fucoidan extracts on angiogenesis of human uterine carcinoma HeLa cells, and found that fucoidan extracts suppressed expression and secretion of an angiogenesis factor vascular endothelial growth factor (VEGF), resulting in suppressed vascular tubules formation of tumor cells. The results taken together clarified that enzyme-digested fucoidan extracts from Cladosiphon novae-caledoniae kylin possess inhibitory effects on invasion and angiogenesis of tumor cells. These effects might, at least partially, be elicited by the antioxidative potential of enzyme digested fucoidan extracts.

Keywords: Angiogenesis, Antitumor activity, Fucoidan, Invasion, Matrix metalloproteinase, VEGF

Full Text

The Full Text of this article is available as a PDF (337.1 KB).

References

  1. Agarwal A., Munoz-Najar U., Klueh U., Shih S.C., Claffey K.P. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am. J. Pathol. 2004;164:1683–1696. doi: 10.1016/S0002-9440(10)63727-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albini A., Morini M., D’Agostini F., Ferrari N., Campelli F., Arena G., Noonan D.M., Pesce C., Flora S. Inhibition of angiogenesis-driven Kaposi's sarcoma tumor growth in nude mice by oral N-acetylcysteine. Cancer Res. 2001;61:8171–8178. [PubMed] [Google Scholar]
  3. Balsari A., Maier J.A., Colnaghi M.I., Menard S. Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor levels, and serum angiogenic activity in patients with breast carcinoma. Lab. Invest. 1999;79:897–902. [PubMed] [Google Scholar]
  4. Belkhiri A., Richards C., Whaley M., McQueen S.A., Orr F.W. Increased expression of activated matrix metalloproteinase-2 by human endothelial cells after sublethal H2O2 exposure. Lab. Invest. 1997;77:533–539. [PubMed] [Google Scholar]
  5. Berkman R.A., Merrill M.J., Reinhold W.C., Monacci W.T., Saxena A., Clark W.C., Robertson J.T., Ali I.U., Oldfield E.H. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J. Clin. Invest. 1993;91:153–159. doi: 10.1172/JCI116165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brauchle M., Funk J.O., Kind P., Werner S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem. 1996;271:21793–21797. doi: 10.1074/jbc.271.36.21793. [DOI] [PubMed] [Google Scholar]
  7. Chabut D., Fischer A.-M., Colliec-Jouault S., Laurendeau I., Matou S., Le Bonniec B., Helley D. Low molecular weight fucoidan and heparin enhance the basic fibroblast growth factor-induced tube formation of endothelial cells through heparin sulfate-dependent a6 overexpression. Mol. Pharmcol. 2003;64:696–702. doi: 10.1124/mol.64.3.696. [DOI] [PubMed] [Google Scholar]
  8. Chabut D., Fischer A.M., Helley D., Colliec S. Low molecular weight fucoidan promotes FGF-2-induced vascular tube formation by human endothelial cells, with decreased PAI-1 release and ICAM-1 downregulation. Thrombosis Res. 2004;113:93–95. doi: 10.1016/j.thromres.2004.01.013. [DOI] [PubMed] [Google Scholar]
  9. Cho M., Hunt T.K., Hussain M.Z. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H2357–2363. doi: 10.1152/ajpheart.2001.280.5.H2357. [DOI] [PubMed] [Google Scholar]
  10. Chua C.C., Hamdy R.C., Chua B.H. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic. Biol. Med. 1998;25:891–897. doi: 10.1016/S0891-5849(98)00115-4. [DOI] [PubMed] [Google Scholar]
  11. Ferrara N. Vascular endothelial growth factor. Trends Cardiovasc. Med. 1993;3:244–250. doi: 10.1016/1050-1738(93)90046-9. [DOI] [PubMed] [Google Scholar]
  12. Grote K., Flach I., Luchtefeld M., Akin E., Holland S.M., Drexler H., Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ. Res. 2003;92:e80–86. doi: 10.1161/01.RES.0000077044.60138.7C. [DOI] [PubMed] [Google Scholar]
  13. Guidi A.J., Abu-Jawdeh G., Berse B., Jackman R.W., Tognazzi K., Dvorak H.F., Brown L.F. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J. Natl. Cancer Inst. 1995;87:1237–1245. doi: 10.1093/jnci/87.16.1237. [DOI] [PubMed] [Google Scholar]
  14. Gurjar M.V., Deleon J., Sharma R.V., Bhalla R.C. Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am. J. Physiol. Heart Circ. Physiol. 2001;281:H2568–2574. doi: 10.1152/ajpheart.2001.281.6.H2568. [DOI] [PubMed] [Google Scholar]
  15. Haroun-Bouhedja F., Lindenmeyer F., Lu H., Soria C., Jozefonvicz J., Boisson-Vidal C. In vitro effects of fucans on DA-MB231 tumor cell adhesion and invasion. Anticancer Res. 2002;22:2285–2292. [PubMed] [Google Scholar]
  16. Hoyoku H. Cancer chemoprevention by natural carotenoids and their related compounds. J. Cell. Biochem. Suppl. 1995;22:231–235. doi: 10.1002/jcb.240590829. [DOI] [PubMed] [Google Scholar]
  17. Itoh H., Noda H., Amano H., Zhuang C., Mizuno T., Ito H. Antitumor activity and immunological properties of marine algal polysaccharides, especially Fucoidan, prepared from Sargassum thunbergii of Pheophyceae. Anticancer Res. 1993;13(6A):2045–2052. [PubMed] [Google Scholar]
  18. Johnsen M., Lund L.R., Romer J., Almholt K., Dano K. Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr. Opin. Cell Biol. 1998;10:667–6671. doi: 10.1016/S0955-0674(98)80044-6. [DOI] [PubMed] [Google Scholar]
  19. Johnson L.L., Dyer R., Hupe D.J. Matrix metalloproteinases. Curr. Opin. Chem. Biol. 1998;2:466–471. doi: 10.1016/S1367-5931(98)80122-1. [DOI] [PubMed] [Google Scholar]
  20. Kolev K., Skopal J., Simon L., Csonka E., Machovich R., Nagy Z. Matrix metalloproteinase-9 expression in post-hypoxic human brain capillary endothelial cells: H2O2 as a trigger and NF-kappaB as a signal transducer. Thromb. Haemost. 2003;90:528–537. doi: 10.1160/TH03-02-0070. [DOI] [PubMed] [Google Scholar]
  21. Koyanagi S., Tanigawa N., Nakagawa H., Soeda S., Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Phamacol. 2003;65:173–179. doi: 10.1016/S0006-2952(02)01478-8. [DOI] [PubMed] [Google Scholar]
  22. Liabakk N.B., Talbot I., Smith R.A., Wilkinson K., Balkwill F. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res. 1996;56:190–196. [PubMed] [Google Scholar]
  23. Malafa M.P., Fokum F.D., Smith L., Louis A. Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate. Ann. Surg. Oncol. 2002;9:1023–1032. doi: 10.1007/BF02574523. [DOI] [PubMed] [Google Scholar]
  24. Maruyama H., Tamauchi H., Hashimoto M., Nakano T. Antitumor activity and immune response of Mekabu Fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo. 2003;17:245–249. [PubMed] [Google Scholar]
  25. Masuda M., Suzui M., Lim J.T., Deguchi A., Soh J.W., Weinstein I.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J. Exp. Ther. Oncol. 2002;2:350–359. doi: 10.1046/j.1359-4117.2002.01062.x. [DOI] [PubMed] [Google Scholar]
  26. Mattern J., Koomagi R., Volm M. Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumor cell proliferation in human epidermoid lung carcinoma. Br. J. Cancer. 1996;73:931–934. doi: 10.1038/bjc.1996.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noda H., Amano H., Arashima K., Nisizawa K. Antitumor activity of marine algae. Hydrobiologica. 1990;204–205:577–584. doi: 10.1007/BF00040290. [DOI] [Google Scholar]
  28. Okuzumi J., Nishino H., Murakoshi M., Iwashima A., Tanaka Y., Yamane T., Fujita Y., Takahashi T. Inhibitory effects of fucoxanthin, a natural carotenoidon N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 1990;55:75–81. doi: 10.1016/0304-3835(90)90068-9. [DOI] [PubMed] [Google Scholar]
  29. Okuzumi J., Takahashi T., Yamane T., Kitao Y., Inagake M., Ohya K., Nishino H., Tanaka Y. Inhibitory effects of fucoxanthin, a natural carotenoidon N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 1993;68:159–168. doi: 10.1016/0304-3835(93)90142-V. [DOI] [PubMed] [Google Scholar]
  30. Qian Y., Luo J., Leonard S.S., Harris G.K., Millecchia L., Flynn D.C., Shi X. Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis. J. Biol. Chem. 2003;278:16189–16197. doi: 10.1074/jbc.M207517200. [DOI] [PubMed] [Google Scholar]
  31. Quanbin Z., Pengzhan Y., Zhien L., Hong Z., Zuhong X., Pengcheng L. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. Appl. Phycol. 2003;15:305–310. doi: 10.1023/A:1025137728525. [DOI] [Google Scholar]
  32. Ruch W., Cooper P.H., Baggiolini M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J. Immunol. Methods. 1983;63:347–357. doi: 10.1016/S0022-1759(83)80008-8. [DOI] [PubMed] [Google Scholar]
  33. Ruperez P., Ahrazem O., Leal J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002;50:840–845. doi: 10.1021/jf010908o. [DOI] [PubMed] [Google Scholar]
  34. Soeda S., Ishida S., Shimeno H., Nagamatsu A. Inhibitory effect of oversulfated fucoidan on invasion through reconstituted basement membrane by murine Lewis lung carcinoma. Jpn. J. Cancer Res. 1994;85:1144–1150. doi: 10.1111/j.1349-7006.1994.tb02920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suzuki K., Hayashi N., Miyamoto Y., Yamamoto M., Ohkawa K., Ito Y., Sasaki Y., Yamaguchi Y., Nakase H., Noda K., Enomoto N., Arai K., Yamada Y., Yoshihara H., Tujimura T., Kawano K., Yoshikawa K., Kamada T. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res. 1996;56:3004–3009. [PubMed] [Google Scholar]
  36. Szatrowski T.P., Nathan C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–798. [PubMed] [Google Scholar]
  37. Tang F.Y., Meydani M. Green tea catechins and vitamin E inhibit angiogenesis of human microvascular endothelial cells through suppression of IL-8 production. Nutr. Cancer. 2001;41:119–125. doi: 10.1207/S15327914NC41-1&2_17. [DOI] [PubMed] [Google Scholar]
  38. Usui T., Asari K., Mizuno T. Isolation of highly purified “Fucoidan” from Eisenia bicycliosits anticoagulant and antitumor activities. Agric. Biol. Chem. 1980;44:1965–1966. [Google Scholar]
  39. Westermarck J., Kahari V.M. Regulation of matrix metalloproteinase expression in tumor invasion. Faseb. J. 1999;13:781–792. [PubMed] [Google Scholar]
  40. Wizigmann-Voos S., Breier G., Risau W., Plate K.H. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995;55:1358–1364. [PubMed] [Google Scholar]
  41. Xue C.-H., Fang Y., Lin H., Chen L., Li Z.-J., Deng D., Lu C.-X. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J. Appl. Phycol. 2001;13:67–70. doi: 10.1023/A:1008103611522. [DOI] [Google Scholar]
  42. Xue C., Yu G., Hirata T., Terao J., Lin H. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Biosci. Biotechnol. Biochem. 1998;62:206–209. doi: 10.1271/bbb.62.206. [DOI] [PubMed] [Google Scholar]
  43. Xue Z., Chang-Hu X., Zhao-Jie L., Yue-Piao C., Hong-Ying L, Hong-Tao Q. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J. Appl. Phycol. 2004;16:111–115. doi: 10.1023/B:JAPH.0000044822.10744.59. [DOI] [Google Scholar]
  44. Yamamoto I., Takahashi M., Suzuki T., Seino H., Mori H. Antitumor effect of seaweeds. IV. Enhancement of antitumor activity by sulfation of a crude Fucoidan from Sargassum kjellmanianum. Jpn. J. Exp. Med. 1984;54:143–151. [PubMed] [Google Scholar]
  45. Zhang Q., Li N., Zhou G., Lu X., Xu Z., Li Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 2003;48:151–155. doi: 10.1016/S1043-6618(03)00103-8. [DOI] [PubMed] [Google Scholar]
  46. Zhu J.W., Yu B.M., Ji Y.B., Zheng M.H., Li D.H. Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol. 2002;8:153–157. doi: 10.3748/wjg.v8.i1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhuang C., Itoh H., Mizuno T., Ito H. Antitumor active Fucoidan from the brown seaweedUmitoranoo (Aargassum thunbergii) Biosci. Biotech. Biochem. 1995;59:563–567. doi: 10.1271/bbb.59.563. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES