Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1998 Nov;28(1-3):229–235. doi: 10.1023/A:1008014706196

pQuattro vectors allow one-step multigene metabolic engineering and auto-selection of quattrocistronic artificial mammalian operons

Martin Fussenegger 1, Samuel Moser 1, James E Bailey 1,
PMCID: PMC3449843  PMID: 19003423

Abstract

Based on internal ribosomal entry sites (IRES) of picornaviral origin we constructed a novel family of mammalian expression vectors. pQuattro vectors contain quattrocistronic artificial eukaryotic operons which link, in a single transcript, the simultaneous and coordinated as well as adjustable expression of up to three independent genes of interest to a terminal neomycin (neo) resistance marker. Due to the strict genetic linkage of the transgenes and the terminal selection marker, this genetic configuration enables, by the selection on neomycin, multigene metabolic engineering of mammalian cells in a single step (one-step metabolic engineering). Furthermore, selection on the terminal cistron of multicistronic expression units enforces cocistronic expression of all upstream encoded genes and maximises genetic integrity of the eukaryotic operon in stable mammalian cell lines, since clones harbouring damaged multicistronic expression units become neomycin-sensitive and are automatically counterselected (auto-selection). The modular set-up and the abundance of restriction sites in pQuattro vectors facilitate the movement of individual genes between multicistronic expression vectors and guarantees high compatibility with genetic elements of a wide variety of existing mammalian expression vectors.

Keywords: CITE, EMCV, GFP, IRES, picornavirus

Full Text

The Full Text of this article is available as a PDF (79.3 KB).

References

  1. Berger J, Hauber J, Hauber G, Geiger R, Cullen BR. Secreted alkaline phosphatase: A powerful new quantitative indicator of geneexpression in eukaryotic cells. Gene. 1988;66:1–10. doi: 10.1016/0378-1119(88)90219-3. [DOI] [PubMed] [Google Scholar]
  2. Bernstein J, Sella O, Le SY, Elroy-Stein O. PDGF2/C SIS mRNAleader contains a differentiation linked internal ribosomal entry site (DIRES) J Biol Chem. 1997;272:9356–9362. doi: 10.1074/jbc.272.14.9356. [DOI] [PubMed] [Google Scholar]
  3. Crameri A, Whitehorn EA, Tate E, Stemmer WPC. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology. 1996;14:315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  4. Dirks W, Wirth M, Hauser H. Dicistronic transcription units for gene expression in mammalian cells. Gene. 1993;128:247–249. doi: 10.1016/0378-1119(93)90569-O. [DOI] [PubMed] [Google Scholar]
  5. Dirks W, Schaper F, Kirchhoff S, Morelle C, Hauser H. A multifunctional vector family for gene expression in mammlian cells. Gene. 1994;149:387–388. doi: 10.1016/0378-1119(94)90186-4. [DOI] [PubMed] [Google Scholar]
  6. El-Deiry WW, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825. doi: 10.1016/0092-8674(93)90500-P. [DOI] [PubMed] [Google Scholar]
  7. Fussenegger M, Mazur X, Bailey JE. A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng. 1997;55:927–939. doi: 10.1002/(SICI)1097-0290(19970920)55:6<927::AID-BIT10>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  8. Fussenegger M, Moser S, Mazur X, Bailey JE. Autoregulated multicistronic expression vectors provide one-step cloning of regulated product gene expression in mammalian cells. Biotech Prog. 1997;13:733–740. doi: 10.1021/bp970108r. [DOI] [PubMed] [Google Scholar]
  9. Fussenegger M, Bailey JE, Hauser H and Müller PP (1998a) Genetic optimizationof recombinant protein production by mammalian cells. TIBTECH (in press).
  10. Fussenegger M, Schlatter S, Dätwyler D, Mazur X, Bailey JE. Controlled proliferation by multigene metabolic engineering enhancesthe productivity of Chinese hamster ovary cells. Nature Biotechnology. 1998;16:468–472. doi: 10.1038/nbt0598-468. [DOI] [PubMed] [Google Scholar]
  11. Fussenegger M, Mazur X, Renner WA and Bailey JE (1998c) Higher productivity of growth-arrested Chinese hamster ovary (CHO) cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog (in press). [DOI] [PubMed]
  12. Fussenegger M, Mazur X, Bailey JE. pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotech Bioeng. 1998;57:1–10. doi: 10.1002/(SICI)1097-0290(19980105)57:1<1::AID-BIT1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  13. Kaufman RJ, Davis MV, Wasley LC, Micknick D. Improved vectors for the stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from DMC virus. Nucl Acids Res. 1991;19:4485–4490. doi: 10.1093/nar/19.16.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krömer WJ, Carafoli E, Bailey JB. Purification of the cardiacsarcoplasmic reticulum membrane protein phospholamban from recombinant E. coli. Eur J Biochem. 1997;248:814–819. doi: 10.1111/j.1432-1033.1997.00814.x. [DOI] [PubMed] [Google Scholar]
  15. Müller P, Kirchhoff S, Hauser H. Sustained expression in proliferation controlled BHK-21 cells. In: Merten OW, Perrin P, Griffiths JB, editors. New developments andapplications in animal cell technology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1998. [Google Scholar]
  16. Papoutsakis ET. Express together and conquer. Nature Biotechnology. 1998;16:416–417. doi: 10.1038/nbt0598-416. [DOI] [PubMed] [Google Scholar]
  17. Rees S, Coote J, Stables J, Goodson S, Harris S, Lee MG. Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTechniques. 1996;20:48–56. doi: 10.2144/96201st05. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES