Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1997 Jan;23(1-3):221–230. doi: 10.1023/A:1007915618413

Cell cultures derived from early zebrafish embryos differentiate in vitro into neurons and astrocytes

Chandramallika Ghosh 1, Yi Liu 1, Chunguang Ma 1, Paul Collodi 1,
PMCID: PMC3449863  PMID: 22358538

Abstract

The zebrafish is a polular nonmammalian model for studies of neural development. We have derived cell cultures, initiated from blastula-stage zebrafish embryos, that differentiate in vitro into neurons and astrocytes. Cultures were initiated in basal nutrient medium supplemented with bovine insulin, trout serum, trout embryo extract and fetal bovine serum. After two weeks in culture the cells exhibited extensive neurite outgrowth and possessed elevated levels of acetylcholinesterase enzyme activity. Ultrastructural analysis revealed that the neurites possessed microtubules, synaptic vessicles and areas exhibiting growth cone morphology. The cultures expressed proteins recognized by antibodies to the neuronal and astrocyte-specific markers, neurofilament and glial fibrillary acidic protein (GFAP). Poly-D-lysine substrate stimulated neurite outgrowth in the cultures and inhibited the growth of nonneuronal cells. Medium conditioned by the buffalo rat liver line, BRL, promoted the growth and survival of the cells in culture. Mitotically active cells were identified in cultures that had undergone extensive differentiation. The embryo cell cultures provide an in vitro system for investigations of biochemical parameters influencing zebrafish neuronal cell growth and differentiation.

Keywords: zebrafish, neural differentiation, fish cell culture, fish embryo

Full Text

The Full Text of this article is available as a PDF (186.5 KB).

References

  1. Ahmed Z, Walker PS, Bellows RE. Properties of neurons from dissociated fetal rat brain in serum-free culture. J Neurosci. 1983;3:2448–2462. doi: 10.1523/JNEUROSCI.03-12-02448.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babich H, Borenfreund E. Applications of the neutral red cytotoxicity assay to in vitro toxicology. ATLA. 1990;18:129–144. [Google Scholar]
  3. Beyers DW, Sikoski PJ. Acetylcholinesterase inhibition in federally endangered Colorada squawfish exposed to carbaryl and malathion. Environ Toxicol Chem. 1994;13:935–939. [Google Scholar]
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bradford CS, Sun L, Barnes DW. Basic FGF stimulates proliferation and suppresses melanogenesis in cell cultures derived from early zebrafish embryos. Mol Marine Biol Biotech. 1994;3:78–86. [PubMed] [Google Scholar]
  6. Cattaneo E, McKay R. Identifying and manipulating neuronal stem cells. Trends Neurosci. 1991;14:338–340. doi: 10.1016/0166-2236(91)90158-q. [DOI] [PubMed] [Google Scholar]
  7. Collodi P, Barnes DW. Mitogenic activity from trout embryos. Proc Natl Acad Sci USA. 1990;87:3498–3502. doi: 10.1073/pnas.87.9.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collodi P, Kamei Y, Sharps A, Weber D, Barnes DW. Fish embryo cell cultures for derivation of stem cells and transgenic chimeras. Mol Marine Biol Biotech. 1992;1:257–265. [PubMed] [Google Scholar]
  9. Collodi P, Kamei Y, Sharps A, Ernst T, Barnes DW. Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol Tox. 1992;8:43–61. doi: 10.1007/BF00119294. [DOI] [PubMed] [Google Scholar]
  10. DeArmond SJ, Fajardo M, Naughton SA, Eng LF. Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res. 1983;262:275–282. doi: 10.1016/0006-8993(83)91018-1. [DOI] [PubMed] [Google Scholar]
  11. Eisen JS. Developmental neurobiology of the zebrafish. J Neurosci. 1991;11:311–317. doi: 10.1523/JNEUROSCI.11-02-00311.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisen JS. Soma position determines identity of primary motoneurons in developing zebrafish embryos. Soc Neurosci Abstr. 1989;15:1262. [Google Scholar]
  13. Eisen JS, Pike SH, Debu B. The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron. 1989;2:1097–1104. doi: 10.1016/0896-6273(89)90234-1. [DOI] [PubMed] [Google Scholar]
  14. Eisen JS, Pike SH, Romancier B. An indentified neuron with variable fates in embryonic zebrafish. J Neurosci. 1990;10:34–43. doi: 10.1523/JNEUROSCI.10-01-00034.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ghosh C, Collodi P. Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology. 1994;14:21–26. doi: 10.1007/BF00772192. [DOI] [PubMed] [Google Scholar]
  16. Ghosh C, Zhou Y, Collodi P. Derivation and characterization of a zebrafish liver cell line. Cell Biol Tox. 1994;10:167–176. doi: 10.1007/BF00757560. [DOI] [PubMed] [Google Scholar]
  17. Greenstein LA, Gaynes LA, Romanus JA, Lee L, Rechler MM, Nissley SP. Purification of rat insulin-like growth factor II. Meth Enzym. 1987;146:259–269. doi: 10.1016/s0076-6879(87)46028-x. [DOI] [PubMed] [Google Scholar]
  18. Ho RK, Kimmel CB. Commitment of cell fate in the early zebrafish embryo. Science. 1993;261:109–111. doi: 10.1126/science.8316841. [DOI] [PubMed] [Google Scholar]
  19. Huszar D, Sharpe A, Jaenisch R. Migration and proliferation of cultured neural crest cells in W mutant neural crest chimeras. Development. 1991;112:131–141. doi: 10.1242/dev.112.1.131. [DOI] [PubMed] [Google Scholar]
  20. Kimmel C, Warga R. Tissue-specific cell lineages originate in the gastrula of the zebrafish. Science. 1986;231:365–368. doi: 10.1126/science.231.4736.365. [DOI] [PubMed] [Google Scholar]
  21. Lendahl U, Zimmerman L, McKay R. CNS stem express a new class of intermediate filament protein. Cell. 1990;60:585–595. doi: 10.1016/0092-8674(90)90662-x. [DOI] [PubMed] [Google Scholar]
  22. Levine JM, Flynn P. Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci. 1986;6:3374–3384. doi: 10.1523/JNEUROSCI.06-11-03374.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lin S, Long W, Chen J, Hopkins N. Production of germ line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc Natl Acad Sci USA. 1992;89:4519–4523. doi: 10.1073/pnas.89.10.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maxwell GD, Forbes ME. Spectrum of in vitro differentiation of quail trunk neural crest cells isolated by cell sorting using the HNK-1 antibody and analysis of adrenergic development of HNK-1+1 sorted subpopulations. J Neurobiol. 1991;22:276–286. doi: 10.1002/neu.480220307. [DOI] [PubMed] [Google Scholar]
  25. Morrison RS, De Vellis J, Lee YL, Bradshaw RA, Eng LF. Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res. 1985;14:167–176. doi: 10.1002/jnr.490140202. [DOI] [PubMed] [Google Scholar]
  26. Murphy M, Reid K, Hilton DJ, Bartlett PF. Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci USA. 1991;88:3498–3501. doi: 10.1073/pnas.88.8.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pease SP, Braghetta D, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF) Develop Biol. 1990;141:344–356. doi: 10.1016/0012-1606(90)90390-5. [DOI] [PubMed] [Google Scholar]
  28. Pleasure SJ, Lee VM-Y. Ntera 2 cells: A human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res. 1993;35:585–602. doi: 10.1002/jnr.490350603. [DOI] [PubMed] [Google Scholar]
  29. Raju T, Bignami A, Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981;85:344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
  30. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–1710. doi: 10.1126/science.1553558. [DOI] [PubMed] [Google Scholar]
  31. Sakai Y, Rawson C, Lindburg K, Barnes D. Serum and transforming growth factor β regulate glial fibrillary acidic in serum-free-derived mouse embryo cells. Proc Natl Acad Sci USA. 1990;87:8378–8382. doi: 10.1073/pnas.87.21.8378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sensenbrenner M, Maderspach K, Latzkowitz L, Jaros GG. Neuronal cells from chick embryo cerebral hemispheres cultivated on polylysine-coated surface. Dev Neurosci. 1978;1:90–101. doi: 10.1159/000112560. [DOI] [PubMed] [Google Scholar]
  33. Sivron T, Eitan S, Schreyer DJ, Schwartz M. Astrocytes play a major role in the control of neuronal proliferation in vitro. Brain Res. 1993;629:199–208. doi: 10.1016/0006-8993(93)91321-i. [DOI] [PubMed] [Google Scholar]
  34. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Develop Biol. 1987;121:1–13. doi: 10.1016/0012-1606(87)90132-1. [DOI] [PubMed] [Google Scholar]
  35. Stainer D, Bilder D, Gilbert W. The B30 ganglioside is a cell surface marker for neural crest derived neurons in the developing mouse. Dev Biol. 1991;144:177–188. doi: 10.1016/0012-1606(91)90489-p. [DOI] [PubMed] [Google Scholar]
  36. Stemple DL, Anderson DJ. Lineage diversification of the neural crest: In vitro investigations. Dev Biol. 1993;159:12–23. doi: 10.1006/dbio.1993.1218. [DOI] [PubMed] [Google Scholar]
  37. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340:471–473. doi: 10.1038/340471a0. [DOI] [PubMed] [Google Scholar]
  38. Ved H, Pieringer R. Regulation of neuronal differentiation by retinoic acid alone and in cooperation with thyroid hormone or hydrocortisone. Dev Neurosci. 1993;15:49–53. doi: 10.1159/000111316. [DOI] [PubMed] [Google Scholar]
  39. Whittaker M. Cholinesterases, Methods of Enzymatic Analysis. 1984;4:52–63. [Google Scholar]
  40. Whittemore SR, Holets VR, Keane RW, Levy DJ, McKay RDG. Transplantation of a temperature-sensitive, nerve growth factor-secreting, neuroblastoma cell line into adult rats with fimbria-fornix lesions escues cholinergic septal neurons. J Neurosci Res. 1991;28:156–170. doi: 10.1002/jnr.490280203. [DOI] [PubMed] [Google Scholar]
  41. Wright EM, Vogel KS, Davies AM. Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron. 1992;9:139–150. doi: 10.1016/0896-6273(92)90229-7. [DOI] [PubMed] [Google Scholar]
  42. Yavin E, Yavin Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J Cell Biol. 1974;62:540–546. doi: 10.1083/jcb.62.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES